
OpenEXR File Layout
Last Update: 04/24/07

This document gives an overview of the layout of OpenEXR image files as byte sequences. The text
assumes that the reader is familiar with OpenEXR terms such as "channel", "attribute" or "data window".
For an explanation of those terms see the Technical Introduction to OpenEXR.

This document does not define the OpenEXR file format. OpenEXR is defined as the file format that is
read and written by the IlmImf open-source C++ library. If this document and the IlmImf library disagree,
then the library takes precedence.

Table of Contents

Basic Data Types...2
Integers..2
Floating-point numbers ..2
Text..2
Packing..3

File Layout..3
High-Level Layout..3
Magic Number..3
Version Field...3
Header...4
Scan Line Blocks..4
Line Offset Table...5
Tiles...6
Tile Offset Table..6

Predefined Attribute Types...6
Sample File...8

1

Basic Data Types

An OpenEXR file is a sequence of 8-bit bytes. Groups of bytes represent basic objects such as integral
numbers, floating-point numbers and text. Those objects are grouped together to form compound objects
such as attributes or scan lines.

Integers

Binary integral numbers with 8, 16, 32 or 64 bits are stored as 1, 2, 4 or 8 bytes. Integral numbers can be
signed or unsigned. Signed numbers are represented using two's complement. Integral numbers are little-
endian, that is, the least significant byte is closest to the start of the file.

OpenEXR uses the following six integer data types:

name signed size in
bytes

unsigned char no 1

short yes 2

unsigned short no 2

int yes 4

unsigned int no 4

unsigned long no 8

Floating-point numbers

Binary floating-point numbers with 16, 32 or 64 bits are stored as 2, 4 or 8 bytes. The representation of 32-
bit and 64-bit floating-point numbers conforms to the IEEE 754 standard. The representation of 16-bit
floating-point numbers is analogous to IEEE 754, but with 5 exponent bits and 10 bits for the fraction. The
exponent bias is 15. Floating-point numbers are little-endian: the least significant bits of the fraction are in
the byte closest to the beginning of the file, while the sign bit and the most significant bits of the exponent
are in the byte closest to the end of the file.

The following table lists the names and sizes of OpenEXR's floating-point data types:

name Size in
bytes

half 2

float 4

double 8

Text

Text strings are represented as sequences of 1-byte characters of type char. Depending on the context,
either the end of a string is indicated by a null character (0x00), or the length of the string is indicated by
an int that precedes the string.

2

Packing

Data in an OpenEXR file are densely packed; the file contains no "padding". For example, consider the
following C struct:

struct SI
{
 short s;
 int i;
};

on most computers, the in-memory representation an SI object occupies eight bytes: 2 bytes for s, 2
padding bytes to ensure four-byte alignment of i, and 4 bytes for i. In an OpenEXR file the same same
object would consume only six bytes: 2 bytes for s and 4 bytes for i. The two padding bytes are not stored
in the file.

File Layout

High-Level Layout

Depending on whether the pixels in an OpenEXR file are stored as scan lines or as tiles, the file consists of
the following components:

file with scan lines: file with tiles:

magic number magic number

version field version field

header header

line offset table tile offset table

scan line blocks tiles

Magic Number

The magic number, of type int, is always 20000630 (decimal). It allows file readers to distinguish
OpenEXR files from other files, since the first four bytes of an OpenEXR file are always 0x76, 0x2f, 0x31
and 0x01.

Version Field

The version field, of type int, is treated as two separate bit fields. The 8 least significant bits (bits 0
through 7) contain the file format version number. The 24 most significant bits (8 through 31) are treated
as a set of boolean flags.

The current OpenEXR version number is 2. (Version 1 was used internally by ILM before OpenEXR was
released as open source. The IlmImf library can no longer read or write version 1 files.)

Bit number 9 of the version field (bit mask 0x200) indicates how the pixels in the file are stored. If the bit
is zero, the pixels are stored as scan lines; if the bit is one, the pixels are stored as tiles. The remaining 23
flags in the version field are currently unused and should be set to zero.

3

This means that currently there are only two valid settings for the version number field: 0x2 for scan-line
based images, and 0x202 for tiled images.

Header

The header is a sequence of attributes, followed by a single null byte (0x00). The layout of an attribute is
as follows:

attribute name

attribute type

attribute size

attribute value

The attribute name and the attribute type are null-terminated text strings. Excluding the null byte, the name
and type must each be as least 1 byte and at most 31 bytes long.

The attribute size, of type int, indicates the size, in bytes, of the attribute value.

The layout of the attribute value depends on the attribute type. The IlmImf library predefines several
different attribute types (see page 6). Application programs can define and store additional attribute types.

The header of every OpenEXR file must contain at least the following attributes:

attribute name attribute type

channels chlist

compression compression

dataWindow box2i

displayWindow box2i

lineOrder lineOrder

pixelAspectRatio float

screenWindowCenter v2f

screenWindowWidth float

In addition, every tiled file must contain a tile description attribute, with name "tiles" and type "tiledesc".
The tile description attribute determines the size of the tiles and the number of resolution levels in the file.

The IlmImf library ignores tile description attributes in scan-line based files. The decision whether the file
contains scan lines or tiles is based on the file's version field, not on the presence of a tile description
attribute.

Scan Line Blocks

One or more scan lines are stored together as a scan-line block. The number of scan lines per block
depends on how the pixel data are compressed:

4

compression method number of
scan lines per
block

NO_COMPRESSION 1

RLE_COMPRESSION 1

ZIPS_COMPRESSION 1

ZIP_COMPRESSION 16

PIZ_COMPRESSION 32

PXR24_COMPRESSION 16

B44_COMPRESSION 32

B44A_COMPRESSION 32

Each scan line block has a y coordinate of type int. The block's y coordinate is equal to the pixel space y
coordinate of the top scan line in the block. The top scan line block in the image is aligned with the top
edge of the data window, that is, the y coordinate of the top scan line block is equal to the data window's
minimum y.

If the height of the image's data window is not a multiple of the number of scan lines per block, then the
block that contains the bottom scan line contains fewer scan lines than the other blocks.

The layout of a scan line block is as follows:

y coordinate

pixel data size

pixel data

The pixel data size, of type int, indicates the number of bytes occupied by the actual pixel data.

Within the pixel data, scan lines are stored top to bottom. Each scan line is contiguous, and within a scan
line the data for each channel are contiguous. Channels are stored in alphabetical order, according to
channel names. Within a channel, pixels are stored left to right.

If the file's compression method is NO_COMPRESSION, then the original, uncompressed pixel data are
stored directly in the file. Otherwise, the uncompressed pixels are fed to the appropriate compressor, and
either the compressed or the uncompressed data are stored in the file, whichever is smaller.

The layout of the compressed data depends on which compression method was applied. The compressed
formats are not described here. For information on the compressed data formats, see the source code for
the IlmImf library.

Line Offset Table

The line offset table allows random access to scan line blocks. The table is a sequence of scan line offsets,
with one offset per scan line block. A scan line offset, of type unsigned long, indicates the distance, in
bytes, between the start of the file and the start of the scan line block. In the table, scan line offsets are
ordered according to increasing scan line y coordinates.

5

Tiles

The layout of a tile is as follows:

tile coordinates

pixel data size

pixel data

The tile coordinates, a sequence of four ints, tileX, tileY, levelX, levelY indicate the tile's position and
resolution level. The pixel data size, of type int, indicates the number of bytes occupied by the pixel data.

The pixel in a tile data are laid out in the same way as in a scan line block, but the length of the scan lines
is equal to the width of the tile, and the number of scan lines is equal to the height of the tile.

If the width of a resolution level is not a multiple of the file's tile width, then the tiles at the right edge of
that resolution level have shorter scan lines. Similarly, if the height of a resolution level is not a multiple of
the file's tile height, then tiles at the bottom edge of the resolution level have fewer scan lines.

Tile Offset Table

The tile offset table allows random access to tiles. The table is a sequence of tile offsets, one offset per tile.
A tile offset, of type unsigned long, indicates the distance, in bytes, between the start of the file and the
start of the tile. In the table scan line offsets are sorted the same way as tiles in INCREASING_Y order.

Predefined Attribute Types

The IlmImf library predefines the following attribute types:

type name data

box2i Four ints: xMin, yMin, xMax, yMax

box2f Four floats: xMin, yMin, xMax, yMax

chlist A sequence of channels followed by a null byte (0x00).

Channel layout:

 name zero-terminated string, from 1 to 31 bytes long

 pixel type int, possible values are
 UINT = 0
 HALF = 1
 FLOAT = 2

 pLinear unsigned char, possible values are 0 and 1

 reserved three chars, should be zero

 xSampling int
 ySampling int

6

chromaticities Eight floats: redX, redY, greenX, greenY, blueX, blueY, whiteX, whiteY

compression unsigned char, possible values are
 NO_COMPRESSION = 0
 RLE_COMPRESSION = 1
 ZIPS_COMPRESSION = 2
 ZIP_COMPRESSION = 3
 PIZ_COMPRESSION = 4
 PXR24_COMPRESSION = 5
 B44_COMPRESSION = 6
 B44A_COMPRESSION = 7

double double

envmap unsigned char, possible values are
 ENVMAP_LATLONG = 0
 ENVMAP_CUBE = 1

float float

int int

keycode Seven ints: filmMfcCode, filmType, prefix, count, perfOffset,
perfsPerFrame, perfsPerCount

lineOrder unsigned char, possible values are
 INCREASING_Y = 0
 DECREASING_Y = 1
 RANDOM_Y = 2

m33f 9 floats

m44f 16 floats

preview Two unsigned ints: width, height, followed by 4×width×height
unsigned chars of pixel data

Scan lines are stored top to bottom, within a scan line pixels are stored
from left to right. A pixel consists of four unsigned chars, R, G, B, A.

rational An int, followed by an unsigned int.

string String length, of type int, followed by a sequence of chars.

tiledesc Two unsigned ints: xSize, ySize, followed by mode, of type
unsigned char, where

 mode = levelMode + roundingMode×16

Possible values for levelMode:
 ONE_LEVEL = 0
 MIPMAP_LEVELS = 1
 RIPMAP_LEVELS = 2

Possible values for roundingMode:
 ROUND_DOWN = 0
 ROUND_UP = 1

timecode Two unsigned ints: timeAndFlags, userData

7

v2i Two ints

v2f Two floats

v3i Three ints.

v3f Three floats.

Sample File

The following is an annotated byte-by-byte listing of a complete OpenEXR file. The file contains a scan-
line based image with four by three pixels. The image has two channels: G, of type HALF, and Z, of type
FLOAT. The pixel data are not compressed. The entire file is 415 bytes long.

The first line of text in each of the gray boxes below lists up to 16 bytes of the file in hexadecimal
notation. The second line in each box shows how the bytes are grouped into integers, floating-point
numbers and text strings. The third and fourth lines indicate how those basic objects form compound
objects such as attributes or the line offset table.

 76 2f 31 01 02 00 00 00 63 68 61 6e 6e 65 6c 73

 20000630 | 2 | c h a n n e l s

 magic number | version, flags | attribute name

 | | start of header

 00 63 68 6c 69 73 74 00 25 00 00 00 47 00 01 00

 \0 | c h l i s t \0 | 37 | G \0 | HALF

 | attribute type | attribute size | attribute value

 00 00 00 00 00 00 01 00 00 00 01 00 00 00 5a 00

 | 0 | 0 | 1 | 1 | Z \0 |

 02 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00

 FLOAT | 0 | 0 | 1 | 1 |

 |

 00 63 6f 6d 70 72 65 73 73 69 6f 6e 00 63 6f 6d

 \0 | c o m p r e s s i o n \0 | c o m

 | attribute name | attribute type

8

 70 72 65 73 73 69 6f 6e 00 01 00 00 00 00 64 61

 p r e s s i o n \0 | 1 | NONE| d a

 | attribute size |value|

 74 61 57 69 6e 64 6f 77 00 62 6f 78 32 69 00 10

 t a W i n d o w \0 | b o x 2 i \0 |

 attribute name | attribute type |

 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 02

 16 | 0 | 0 | 3 |

attribute size| attribute value

 00 00 00 64 69 73 70 6c 61 79 57 69 6e 64 6f 77

 2 | d i s p l a y W i n d o w

 | attribute name

 00 62 6f 78 32 69 00 10 00 00 00 00 00 00 00 00

 \0 | b o x 2 i \0 | 16 | 0 |

 | attribute type | attribute size | attribute value

 00 00 00 03 00 00 00 02 00 00 00 6c 69 6e 65 4f

 0 | 3 | 2 | l i n e O

 | attribute name

 72 64 65 72 00 6c 69 6e 65 4f 72 64 65 72 00 01

 r d e r \0 | l i n e O r d e r \0 |

 | attribute type |

 00 00 00 00 70 69 78 65 6c 41 73 70 65 63 74 52

 1 |INCY | p i x e l A s p e c t R

attribute size|value| attribute name

9

 61 74 69 6f 00 66 6c 6f 61 74 00 04 00 00 00 00

 a t i o \0 | f l o a t \0 | 4 |

 | attribute type | attribute size |

 00 80 3f 73 63 72 65 65 6e 57 69 6e 64 6f 77 43

 1.0 | s c r e e n W i n d o w C

attribute value| attribute name

 65 6e 74 65 72 00 76 32 66 00 08 00 00 00 00 00

 e n t e r \0 | v 2 f \0 | 8 |

 | attribute type | attribute size |

 00 00 00 00 00 00 73 63 72 65 65 6e 57 69 6e 64

0.0 | 0.0 | s c r e e n W i n d

attribute value | attribute name

 6f 77 57 69 64 74 68 00 66 6c 6f 61 74 00 04 00

 o w W i d t h \0 | f l o a t \0 |

 | attribute type |

 00 00 00 00 80 3f 00 3f 01 00 00 00 00 00 00 5f

4 | 1.0 | \0 | 319 |

size | attribute value | | offset of scan line 0 |

 end of header | start of scan line offset table

 01 00 00 00 00 00 00 7f 01 00 00 00 00 00 00 00

 351 | 383 |

 offset of scan line 1 | offset of scan line 2 |

 end of scan line offset table |

 00 00 00 18 00 00 00 00 00 54 29 d5 35 e8 2d 5c

 0 | 24 | 0.000 | 0.042 | 0.365 | 0.092 |

 y | pixel data size | pixel data for G channel |

 scan line 0

10

 28 81 3a cf e1 34 3e 8b 0b bb 3d 89 74 f9 3e 01

0.000985395 | 0.176643 | 0.0913306 | 0.487217 |

pixel data for Z channel |

 |

 00 00 00 18 00 00 00 37 38 76 33 74 3b 73 38 7f

 1 | 24 | 0.527 | 0.233 | 0.932 | 0.556 |

 y | pixel data size | pixel data for G channel |

 scan line 1

 ab e8 3e 8a cf 54 3f 5b 6c 11 3f 20 35 50 3d 02

0.454433 | 0.831292 | 0.56806 | 0.0508319 |

pixel data for Z channel |

 |

 00 00 00 18 00 00 00 23 3a 0a 34 02 3b 5d 3b 38

 2 | 24 | 0.767 | 0.252 | 0.876 | 0.920 |

 y | pixel data size | pixel data for G channel |

 scan line 2

 f3 9a 3c 4d ad 98 3e 1c 14 08 3f 4c f3 03 3f

0.0189148 | 0.298197 | 0.531557 | 0.515431

pixel data for Z channel

 end of file

11

	Basic Data Types
	Integers
	Floating-point numbers
	Text
	Packing

	File Layout
	High-Level Layout
	Magic Number
	Version Field
	Header
	Scan Line Blocks
	Line Offset Table
	Tiles
	Tile Offset Table

	Predefined Attribute Types
	Sample File

