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Foreword

This manual documents the release 4.11 of the OCaml system. It is organized as follows.
e Part I, “An introduction to OCaml”, gives an overview of the language.
e Part I, “The OCaml language”, is the reference description of the language.

e Part III, “The OCaml tools”, documents the compilers, toplevel system, and programming
utilities.

e Part IV, “The OCaml library”, describes the modules provided in the standard library.

e Part V, “Appendix”, contains an index of all identifiers defined in the standard library, and
an index of keywords.

Conventions

OCaml runs on several operating systems. The parts of this manual that are specific to one
operating system are presented as shown below:

Unix:
This is material specific to the Unix family of operating systems, including Linux and macOS.

Windows:
This is material specific to Microsoft Windows (XP, Vista, 7, 8, 10).

License

The OCaml system is copyright © 1996-2020 Institut National de Recherche en Informatique et en
Automatique (INRIA). INRIA holds all ownership rights to the OCaml system.

The OCaml system is open source and can be freely redistributed. See the file LICENSE in the
distribution for licensing information.

The OCaml documentation and user’s manual is copyright © 2020 Institut National de
Recherche en Informatique et en Automatique (INRIA).

The OCaml documentation and user’s manual is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0), https://creativecommons.
org/licenses/by-sa/4.0/.


https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
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Availability

The complete OCaml distribution can be accessed via the website https://ocaml.org/. This site
contains a lot of additional information on OCaml.


https://ocaml.org/

Part 1

An introduction to OCaml
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Chapter 1

The core language

This part of the manual is a tutorial introduction to the OCaml language. A good familiarity with
programming in a conventional languages (say, C or Java) is assumed, but no prior exposure to
functional languages is required. The present chapter introduces the core language. Chapter 2 deals
with the module system, chapter 3 with the object-oriented features, chapter 4 with extensions to
the core language (labeled arguments and polymorphic variants), and chapter 6 gives some advanced
examples.

1.1 Basics

For this overview of OCaml, we use the interactive system, which is started by running ocaml from
the Unix shell, or by launching the OCamlwin.exe application under Windows. This tutorial is
presented as the transcript of a session with the interactive system: lines starting with # represent
user input; the system responses are printed below, without a leading #.

Under the interactive system, the user types OCaml phrases terminated by ;; in response to
the # prompt, and the system compiles them on the fly, executes them, and prints the outcome of
evaluation. Phrases are either simple expressions, or let definitions of identifiers (either values or
functions).

# 1+2%3;,;
- : int =7

# let pi = 4.0 *. atan 1.0;;
val pi : float = 3.14159265358979312

# let square x = X *. X;;
val square : float -> float = <fun>

# square (sin pi) +. square (cos pi);;

- : float = 1.

The OCaml system computes both the value and the type for each phrase. Even function parameters
need no explicit type declaration: the system infers their types from their usage in the function.
Notice also that integers and floating-point numbers are distinct types, with distinct operators: +
and * operate on integers, but +. and *. operate on floats.

13
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# 1.0 x 2;;

Error: This expression has type float but an expression was expected of type

int
Recursive functions are defined with the let rec binding:

# let rec fib n =
# if n < 2 then n else fib (n-1) + fib (n-2);;
val fib : int -> int = <fun>

# fib 10;;
- : int = 55

1.2 Data types

In addition to integers and floating-point numbers, OCaml offers the usual basic data types:

e booleans
# (1 < 2) = false;;

- : bool = false

# let one = if true then 1 else 2;;
val one : int = 1

e characters
# 'a'ys
- : char = 'a'

# int_of_char '\n';;
- : int = 10

o immutable character strings

# IIHellOII ~ nn = Ilworldll; ;
- : string = "Hello world"

# {|This is a quoted string, here, neither \ nor " are special characters|};;

- : string =
"This is a quoted string, here, neither \\ nor \" are special characters"

YOO

- : bool = true

# {delimiter|the end of this|}quoted string is here|delimiter}
# = "the end of this|}quoted string is here";;
- : bool = true
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Predefined data structures include tuples, arrays, and lists. There are also general mechanisms
for defining your own data structures, such as records and variants, which will be covered in more
detail later; for now, we concentrate on lists. Lists are either given in extension as a bracketed
list of semicolon-separated elements, or built from the empty list [1 (pronounce “nil”) by adding
elements in front using the :: (“cons”) operator.

# let 1 = ["is"; "a"; "tale"; "told"; "etc."];;
val 1 : string list = ["is"; "a"; "tale"; "told"; "etc."]

# "Life" :: 1;;
- : string list = ["Life"; "is"; "a"; "tale"; "told"; "etc."]

As with all other OCaml data structures, lists do not need to be explicitly allocated and deallocated
from memory: all memory management is entirely automatic in OCaml. Similarly, there is no
explicit handling of pointers: the OCaml compiler silently introduces pointers where necessary.

As with most OCaml data structures, inspecting and destructuring lists is performed by pattern-
matching. List patterns have exactly the same form as list expressions, with identifiers representing
unspecified parts of the list. As an example, here is insertion sort on a list:

# let rec sort 1lst =
# match 1st with

# 0 ->

# | head :: tail -> insert head (sort tail)

# and insert elt 1lst =

# match 1lst with

# [0 -> [elt]

# | head :: tail -> if elt <= head then elt :: 1lst else head :: insert elt tail
# 5

val sort : 'a list -> 'a list = <fun>

val insert : 'a -> 'a list -> 'a list = <fun>

# sort 1;;

- : string list = ["a"; "etc."; "is"; "tale"; "told"]

The type inferred for sort, 'a list -> 'a list, means that sort can actually apply to lists
of any type, and returns a list of the same type. The type 'a is a type variable, and stands for
any given type. The reason why sort can apply to lists of any type is that the comparisons (=,
<=, etc.) are polymorphic in OCaml: they operate between any two values of the same type. This
makes sort itself polymorphic over all list types.

# sort [6;2;5;3];;
- : int list = [2; 3; 5; 6]

# sort [3.14; 2.718];;
: float list = [2.718; 3.14]

The sort function above does not modify its input list: it builds and returns a new list con-
taining the same elements as the input list, in ascending order. There is actually no way in OCaml
to modify a list in-place once it is built: we say that lists are immutable data structures. Most
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OCaml data structures are immutable, but a few (most notably arrays) are mutable, meaning that
they can be modified in-place at any time.

The OCaml notation for the type of a function with multiple arguments is
argl_type —-> arg2_type -> ... -> return_type. For example, the type inferred for insert,
'a => 'a list -> 'a list, means that insert takes two arguments, an element of any type 'a
and a list with elements of the same type 'a and returns a list of the same type.

1.3 Functions as values

OCaml is a functional language: functions in the full mathematical sense are supported and can
be passed around freely just as any other piece of data. For instance, here is a deriv function that
takes any float function as argument and returns an approximation of its derivative function:

# let deriv f dx = function x -> (f (x +. dx) -. f x) /. dx;;
val deriv : (float -> float) -> float -> float -> float = <fun>

# let sin' = deriv sin le-6;;
val sin' : float -> float = <fun>
# sin' pi;;

- : float = -1.00000000013961143
Even function composition is definable:

# let compose f g = function x > f (g x);;
val compose : ('a -> 'b) -> ('c => 'a) -> 'c -> 'b = <fun>

# let cos2 = compose square cos;;
val cos2 : float -> float = <fun>

Functions that take other functions as arguments are called “functionals”, or “higher-order
functions”. Functionals are especially useful to provide iterators or similar generic operations over
a data structure. For instance, the standard OCaml library provides a List.map functional that
applies a given function to each element of a list, and returns the list of the results:

# List.map (function n ->n * 2 + 1) [0;1;2;3;4];;
- : int list = [1; 3; 5; 7; 9]

This functional, along with a number of other list and array functionals, is predefined because it is
often useful, but there is nothing magic with it: it can easily be defined as follows.

# let rec map £ 1 =

# match 1 with

# 0 -> 1

# | hd :: t1 -> f hd :: map f tl;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
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1.4 Records and variants

User-defined data structures include records and variants. Both are defined with the type declara-
tion. Here, we declare a record type to represent rational numbers.

# type ratio = {num: int; denom: int};;
type ratio = { num : int; denom : int; }

# let add_ratio rl r2 =

# {num = ri1.num * r2.denom + r2.num * rl.denom;
# denom = rl.denom * r2.denom};;

val add_ratio : ratio -> ratio -> ratio = <fun>

# add_ratio {num=1; denom=3} {num=2; denom=5};;
- : ratio = {num = 11; denom = 15}
Record fields can also be accessed through pattern-matching:

# let integer_part r =

# match r with

# {num=num; denom=denom} -> num / denom;;
val integer_part : ratio -> int = <fun>

Since there is only one case in this pattern matching, it is safe to expand directly the argument r
in a record pattern:

# let integer_part {num=num; denom=denom} = num / denom;;
val integer_part : ratio -> int = <fun>

Unneeded fields can be omitted:

# let get_denom {denom=denom} = denom;;
val get_denom : ratio -> int = <fun>

Optionally, missing fields can be made explicit by ending the list of fields with a trailing wildcard

# let get_num {num=num; _ } = num;;
val get_num : ratio -> int = <fun>

When both sides of the = sign are the same, it is possible to avoid repeating the field name by
eliding the =field part:

# let integer_part {num; denom} = num / denom;;
val integer_part : ratio -> int = <fun>

This short notation for fields also works when constructing records:

# let ratio num denom = {num; denom};;
val ratio : int -> int -> ratio = <fun>

At last, it is possible to update few fields of a record at once:

# let integer_product integer ratio = { ratio with num = integer * ratio.num };;
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val integer_product : int -> ratio -> ratio = <fun>

With this functional update notation, the record on the left-hand side of with is copied except for
the fields on the right-hand side which are updated.

The declaration of a variant type lists all possible forms for values of that type. Each case is
identified by a name, called a constructor, which serves both for constructing values of the variant
type and inspecting them by pattern-matching. Constructor names are capitalized to distinguish
them from variable names (which must start with a lowercase letter). For instance, here is a variant
type for doing mixed arithmetic (integers and floats):

# type number = Int of int | Float of float | Error;;
type number = Int of int | Float of float | Error

This declaration expresses that a value of type number is either an integer, a floating-point number,
or the constant Error representing the result of an invalid operation (e.g. a division by zero).
Enumerated types are a special case of variant types, where all alternatives are constants:

# type sign = Positive | Negative;;
type sign = Positive | Negative

# let sign_int n = if n >= 0 then Positive else Negative;;
val sign_int : int -> sign = <fun>

To define arithmetic operations for the number type, we use pattern-matching on the two num-
bers involved:

# let add_num nl n2 =
# match (nl, n2) with
(Int i1, Int i2) ->
(* Check for overflow of integer addition )
if sign_int il = sign_int i2 && sign_int (il + i2) <> sign_int il
then Float(float il +. float i2)
else Int(il + i2)
| (Int i1, Float f2) -> Float(float il +. £2)
| (Float f1, Int i2) -> Float(fl +. float i2)
| (Float f1, Float f2) -> Float(f1i +. f2)
| (Error, _) -> Error
| (_, Error) -> Error;;

H OH HF H H H H HF H H

val add_num : number -> number -> number = <fun>
# add_num (Int 123) (Float 3.14159);;
- : number = Float 126.14159

Another interesting example of variant type is the built-in 'a option type which represents
either a value of type 'a or an absence of value:

# type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

This type is particularly useful when defining function that can fail in common situations, for
instance
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# let safe_square_root x = if x > 0. then Some(sqrt x) else None;;
val safe_square_root : float -> float option = <fun>

The most common usage of variant types is to describe recursive data structures. Consider for
example the type of binary trees:

# type 'a btree = Empty | Node of 'a * 'a btree * 'a btree;;
type 'a btree = Empty | Node of 'a * 'a btree * 'a btree

This definition reads as follows: a binary tree containing values of type 'a (an arbitrary type) is
either empty, or is a node containing one value of type 'a and two subtrees also containing values
of type 'a, that is, two 'a btree.

Operations on binary trees are naturally expressed as recursive functions following the same
structure as the type definition itself. For instance, here are functions performing lookup and
insertion in ordered binary trees (elements increase from left to right):

# let rec member x btree =
# match btree with

# Empty -> false

# | Node(y, left, right) ->

# if x = y then true else

# if x < y then member x left else member x right;;
val member : 'a -> 'a btree -> bool = <fun>

# let rec insert x btree =

# match btree with

# Empty -> Node(x, Empty, Empty)

# | Node(y, left, right) ->

# if x <= y then Node(y, insert x left, right)

# else Node(y, left, insert x right);;
val insert : 'a -> 'a btree -> 'a btree = <fun>

1.4.1 Record and variant disambiguation

( This subsection can be skipped on the first reading )
Astute readers may have wondered what happens when two or more record fields or constructors
share the same name

# type first_record = { x:int; y:int; z:int }
# type middle_record = { x:int; z:int }
# type last_record { x:int };;

# type first_variant = A | B | C
# type last_variant = A;;

The answer is that when confronted with multiple options, OCaml tries to use locally available
information to disambiguate between the various fields and constructors. First, if the type of the
record or variant is known, OCaml can pick unambiguously the corresponding field or constructor.
For instance:
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# let look_at_x_then_z (r:first_record) =

# let x = r.x in

# X +r.z;;

val look_at_x then_z : first_record -> int = <fun>

# let permute (x:first_variant) = match x with

# | A -> (B:first_variant)
# | B> A
# | C > C;;

val permute : first_variant -> first_variant = <fun>

# type wrapped = First of first_record

# let f (First r) =r, r.x;;

type wrapped = First of first_record

val f : wrapped -> first_record * int = <fun>

In the first example, (r:first_record) is an explicit annotation telling OCaml that the type
of r is first_record. With this annotation, Ocaml knows that r.x refers to the x field of the
first record type. Similarly, the type annotation in the second example makes it clear to OCaml
that the constructors A, B and C come from the first variant type. Contrarily, in the last example,
OCaml has inferred by itself that the type of r can only be first_record and there are no needs
for explicit type annotations.

Those explicit type annotations can in fact be used anywhere. Most of the time they are
unnecessary, but they are useful to guide disambiguation, to debug unexpected type errors, or
combined with some of the more advanced features of OCaml described in later chapters.

Secondly, for records, OCaml can also deduce the right record type by looking at the whole set
of fields used in a expression or pattern:

# let project_and_rotate {x;y; _ Y} ={x=-y; y=x; z =0} ;;

val project_and_rotate : first_record -> first_record = <fun>

Since the fields x and y can only appear simultaneously in the first record type, OCaml infers that
the type of project_and_rotate is first_record -> first_record.

In last resort, if there is not enough information to disambiguate between different fields or
constructors, Ocaml picks the last defined type amongst all locally valid choices:

# let look_at_xz {x;z} = x;;
val look_at_xz : middle_record -> int = <fun>

Here, OCaml has inferred that the possible choices for the type of {x;z} are first_record
and middle_record, since the type last_record has no field z. Ocaml then picks the type
middle_record as the last defined type between the two possibilities.

Beware that this last resort disambiguation is local: once Ocaml has chosen a disambiguation,
it sticks to this choice, even if it leads to an ulterior type error:

# let look_at_x_then_y r =
# let x = r.x in (* Ocaml deduces [r: last record] *)
# X +r.y;;
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Error: This expression has type last_record
The field y does not belong to type last_record

# let is_a_or_b x = match x with
# | A -> true (x OCaml infers [x: last_ variant] x)
# | B -> true;;

Error: This variant pattern is expected to have type last_variant
The constructor B does not belong to type last_variant

Moreover, being the last defined type is a quite unstable position that may change surrepti-
tiously after adding or moving around a type definition, or after opening a module (see chapter
2). Consequently, adding explicit type annotations to guide disambiguation is more robust than
relying on the last defined type disambiguation.

1.5 Imperative features

Though all examples so far were written in purely applicative style, OCaml is also equipped with
full imperative features. This includes the usual while and for loops, as well as mutable data
structures such as arrays. Arrays are either created by listing semicolon-separated element values
between [| and |] brackets, or allocated and initialized with the Array.make function, then filled
up later by assignments. For instance, the function below sums two vectors (represented as float
arrays) componentwise.

# let add_vect vl v2 =

# let len = min (Array.length v1) (Array.length v2) in
# let res = Array.make len 0.0 in

# for i = 0 to len - 1 do

# res. (i) <- vi.(i) +. v2.(1)

# done;

# res;;

val add_vect : float array -> float array -> float array = <fun>

# add_vect [| 1.0; 2.0 |1 [l 3.0; 4.0 |]1;;
- : float array = [|4.; 6.]]

Record fields can also be modified by assignment, provided they are declared mutable in the
definition of the record type:

# type mutable_point = { mutable x: float; mutable y: float };;
type mutable_point = { mutable x : float; mutable y : float; }

# let translate p dx dy =
# p.x <-p.x +. dx; p.y <- p.y +. dy;;
val translate : mutable_point -> float -> float -> unit = <fun>

# let mypoint = { x = 0.0; y = 0.0 };;
val mypoint : mutable_point = {x = 0.; y = 0.}
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# translate mypoint 1.0 2.0;;
- : unit = ()

+H+

mypoint;;
- : mutable_point = {x = 1.; y = 2.}

OCaml has no built-in notion of variable — identifiers whose current value can be changed
by assignment. (The let binding is not an assignment, it introduces a new identifier with a new
scope.) However, the standard library provides references, which are mutable indirection cells, with
operators ! to fetch the current contents of the reference and := to assign the contents. Variables
can then be emulated by let-binding a reference. For instance, here is an in-place insertion sort
over arrays:

# let insertion_sort a =
# for i = 1 to Array.length a - 1 do

# let val_i = a.(i) in

# let j = ref i in

# while !j > 0 && val_i < a.(!j - 1) do
4 a.(13) <= a.(1j - 1);

# joi=1'j-1

# done;

# a.('j) <- val_i

# done;;

val insertion_sort : 'a array -> unit = <fun>

References are also useful to write functions that maintain a current state between two calls to
the function. For instance, the following pseudo-random number generator keeps the last returned
number in a reference:

# let current_rand = ref O;;
val current_rand : int ref = {contents = O}

# let random () =

# current_rand := !current_rand * 25713 + 1345;
# lcurrent_rand;;

val random : unit -> int = <fun>

Again, there is nothing magical with references: they are implemented as a single-field mutable
record, as follows.

# type 'a ref = { mutable contents: 'a };;

type 'a ref = { mutable contents : 'a; }

# let (! ) r = r.contents;;
val (! ) : 'a ref -> 'a = <fun>

# let ( := ) r newval = r.contents <- newval;;
val ( := ) : 'a ref -> 'a -> unit = <fun>
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In some special cases, you may need to store a polymorphic function in a data structure, keeping
its polymorphism. Doing this requires user-provided type annotations, since polymorphism is only
introduced automatically for global definitions. However, you can explicitly give polymorphic types
to record fields.

# type idref = { mutable id: 'a. 'a -> 'a };;
type idref = { mutable id : 'a. 'a -> 'a; }

# let r = {id = fun x -> x};;
val r : idref = {id = <fun>}

# let g s = (s.id 1, s.id true);;
val g : idref -> int * bool = <fun>

# r.id <- (fun x -> print_string "called id\n"; x);;
- : unit = ()

#gr;;

called id

called id

- : int * bool = (1, true)

1.6 Exceptions

OCaml provides exceptions for signalling and handling exceptional conditions. Exceptions can also
be used as a general-purpose non-local control structure, although this should not be overused since
it can make the code harder to understand. Exceptions are declared with the exception construct,
and signalled with the raise operator. For instance, the function below for taking the head of a
list uses an exception to signal the case where an empty list is given.

# exception Empty_list;;
exception Empty_list

# let head 1 =
# match 1 with

# [] -> raise Empty_list
# | hd :: t1 -> hd;;

val head : 'a list -> 'a = <fun>
# head [1;2];;

- : int =1

# head [1;;

Exception: Empty_list.

Exceptions are used throughout the standard library to signal cases where the library functions
cannot complete normally. For instance, the List.assoc function, which returns the data associ-
ated with a given key in a list of (key, data) pairs, raises the predefined exception Not_found when
the key does not appear in the list:
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# List.assoc 1 [(0, "zero"); (1, "one")];;
- : string = "one"

# List.assoc 2 [(0, "zero"); (1, "one")];;
Exception: Not_found.
Exceptions can be trapped with the try...with construct:

# let name_of_binary_digit digit =

#  try

# List.assoc digit [0, "zero"; 1, "one"]
# with Not_found ->

# "not a binary digit";;

val name_of_binary_digit : int -> string = <fun>

# name_of_binary_digit O;;
- : string = "zero"

# name_of_binary_digit (-1);;
- : string = "not a binary digit"

The with part does pattern matching on the exception value with the same syntax and behavior
as match. Thus, several exceptions can be caught by one try...with construct:

# let rec first_named_value values names =

#  try

# List.assoc (head values) names

# with

# | Empty_list -> "no named value"

# | Not_found -> first named value (List.tl values) names;;

val first_named_value : 'a list -> ('a * string) list -> string = <fun>
# first named value [ 0; 10 ] [ 1, "one"; 10, "ten"];;
- : string = "ten"

Also, finalization can be performed by trapping all exceptions, performing the finalization, then
re-raising the exception:

# let temporarily_set_reference ref newval funct =
# let oldval = !ref in

#  try

# ref := newval;

# let res = funct () in
# ref := oldval;

# res

# with x ->

# ref := oldval;

# raise x;;

val temporarily_set_reference : 'a ref -> 'a -> (unit -> 'b) -> 'b = <fun>
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An alternative to try...with is to catch the exception while pattern matching:

# let assoc_may map f x 1 =

# match List.assoc x 1 with

# | exception Not_found -> None

# 'y > £ y;;

val assoc_may_map : ('a -> 'b option) -> 'c¢ -> ('c * 'a) list -> 'b option =
<fun>

Note that this construction is only useful if the exception is raised between match. ..with. Exception
patterns can be combined with ordinary patterns at the toplevel,

# let flat_assoc_opt x 1 =
# match List.assoc x 1 with

# | None | exception Not_found -> None
# | Some _ as v -> v;;
val flat_assoc_opt : 'a -> ('a * 'b option) list -> 'b option = <fun>

but they cannot be nested inside other patterns. For instance, the pattern Some (exception A)
is invalid.

When exceptions are used as a control structure, it can be useful to make them as local as
possible by using a locally defined exception. For instance, with

# let fixpoint f x =

# let exception Done in
# let x = ref x in

# try while true do

# let y = f !x in

# if !x = y then raise Done else x := y
# done; assert false

# with Done -> !x;;

val fixpoint : ('a -> 'a) -> 'a -> 'a = <fun>

the function f cannot raise a Done exception, which removes an entire class of misbehaving functions.

1.7 Lazy expressions

OCaml allows us to defer some computation until later when we need the result of that computation.

We use lazy (expr) to delay the evaluation of some expression expr. For example, we can
defer the computation of 1+1 until we need the result of that expression, 2. Let us see how we
initialize a lazy expression.

# let lazy_two = lazy ( print_endline "lazy_two evaluation"; 1 + 1 );;
val lazy_two : int lazy_ t = <lazy>

We added print_endline "lazy_two evaluation" to see when the lazy expression is being
evaluated.

The value of lazy_two is displayed as <lazy>, which means the expression has not been eval-
uated yet, and its final value is unknown.
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Note that lazy_two has type int lazy_t. However, the type 'a lazy_t is an internal type
name, so the type 'a Lazy.t should be preferred when possible.

When we finally need the result of a lazy expression, we can call Lazy.force on that expression
to force its evaluation. The function force comes from standard-library module Lazy[26.24].

# Lazy.force lazy_two;;
lazy_two evaluation
- : int = 2

Notice that our function call above prints “lazy_two evaluation” and then returns the plain
value of the computation.

Now if we look at the value of lazy_two, we see that it is not displayed as <lazy> anymore but
as lazy 2.

# lazy_two;;
- : int lazy_t = lazy 2

This is because Lazy.force memoizes the result of the forced expression. In other words,
every subsequent call of Lazy.force on that expression returns the result of the first computation
without recomputing the lazy expression. Let us force lazy_two once again.

# Lazy.force lazy_two;;
- : int = 2

The expression is not evaluated this time; notice that “lazy_two evaluation” is not printed. The
result of the initial computation is simply returned.
Lazy patterns provide another way to force a lazy expression.

# let lazy_l = lazy ([1; 2] @ [3; 41);;
val lazy_1 : int list lazy_t = <lazy>

# let lazy 1 = lazy_1;;

val 1 : int list = [1; 2; 3; 4]

We can also use lazy patterns in pattern matching.

# let maybe_eval lazy_guard lazy_expr =

# match lazy_guard, lazy_expr with

# | lazy false, _ -> "matches if (Lazy.force lazy_guard = false); lazy_expr not forced"
# | lazy true, lazy _ -> "matches if (Lazy.force lazy_guard = true); lazy_expr forced";;

val maybe_eval : bool lazy_t -> 'a lazy_t -> string = <fun>

The lazy expression lazy_expr is forced only if the lazy_guard value yields true once com-
puted. Indeed, a simple wildcard pattern (not lazy) never forces the lazy expression’s evaluation.
However, a pattern with keyword lazy, even if it is wildcard, always forces the evaluation of the
deferred computation.

1.8 Symbolic processing of expressions

We finish this introduction with a more complete example representative of the use of OCaml
for symbolic processing: formal manipulations of arithmetic expressions containing variables. The
following variant type describes the expressions we shall manipulate:
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# type expression =

Const of float
| Var of string
| Sum of expression * expression ( €2 *)
| Diff of expression * expression (x(l—f() <)
| Prod of expression * expression  (xel xe2 %)
I (

Quot of expression * expression x el / e2 x)

H OH H H OH H R

)
type expression =

Const of float
| Var of string
| Sum of expression * expression
| Diff of expression * expression
| Prod of expression * expression
| Quot of expression * expression

We first define a function to evaluate an expression given an environment that maps variable
names to their values. For simplicity, the environment is represented as an association list.

# exception Unbound_variable of string;;
exception Unbound_variable of string

# let rec eval env exp =

# match exp with

# Const ¢ -> ¢

# | Var v —>

# (try List.assoc v env with Not_found -> raise (Unbound_variable v))
# | Sum(f, g) -> eval env f +. eval env g

# | Diff(f, g) -> eval env f -. eval env g

# | Prod(f, g) -> eval env f *. eval env g

# | Quot(f, g) -> eval env f /. eval env g;;

val eval : (string * float) list -> expression -> float = <fun>

# eval [("x", 1.0); ("y", 3.14)] (Prod(Sum(Var "x", Const 2.0), Var "y"));;
- : float = 9.42

Now for a real symbolic processing, we define the derivative of an expression with respect to a
variable dv:

# let rec deriv exp dv =
# match exp with
Const ¢ -> Const 0.0
| Var v —=> if v = dv then Const 1.0 else Const 0.0
| Sum(f, g) -> Sum(deriv f dv, deriv g dv)
| Diff(f, g) -> Diff(deriv f dv, deriv g dv)
| Prod(f, g) -> Sum(Prod(f, deriv g dv), Prod(deriv f dv, g))
| Quot(f, g) -> Quot(Diff(Prod(deriv f dv, g), Prod(f, deriv g dv)),
Prod(g, g))

H OH HF H H HF H H
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val deriv : expression -> string -> expression = <fun>

# deriv (Quot(Const 1.0, Var "x")) "x'";;

- ! expression =

Quot (Diff (Prod (Comst 0., Var "x"), Prod (Const 1., Comst 1.)),
Prod (Var "x", Var "x"))

1.9 Pretty-printing

As shown in the examples above, the internal representation (also called abstract syntax) of expres-
sions quickly becomes hard to read and write as the expressions get larger. We need a printer and
a parser to go back and forth between the abstract syntax and the concrete syntax, which in the
case of expressions is the familiar algebraic notation (e.g. 2*x+1).

For the printing function, we take into account the usual precedence rules (i.e. * binds tighter
than +) to avoid printing unnecessary parentheses. To this end, we maintain the current operator
precedence and print parentheses around an operator only if its precedence is less than the current
precedence.

# let print_expr exp =
# (* Local function definitions )
# let open_paren prec op_prec =

# if prec > op_prec then print_string "(" in

# let close_paren prec op_prec =

# if prec > op_prec then print_string ")" in

# let rec print prec exp = (* prec is the current precedence )
# match exp with

# Const ¢ -> print_float c

# | Var v -> print_string v

# | Sum(f, g) ->

# open_paren prec O;

# print O f; print_string " + "; print O g;

# close_paren prec O

# | Diff(f, g) ->

# open_paren prec O;

# print O f; print_string " - "; print 1 g;

# close_paren prec O

# | Prod(f, g) —>

# open_paren prec 2;

# print 2 f; print_string " * "; print 2 g;

# close_paren prec 2

# | Quot(f, g —->

# open_paren prec 2;

# print 2 f; print_string " / "; print 3 g;

# close_paren prec 2

# in print O exp;;
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val print_expr : expression —> unit = <fun>

# let e = Sum(Prod(Const 2.0, Var "x"), Const 1.0);;
val e : expression = Sum (Prod (Const 2., Var "x"), Const 1.)

# print_expr e; print_newline Q);;
2. *x x + 1.
- : unit = ()

# print_expr (deriv e "x"); print_newline ();;
2. x 1. + 0. *x + 0.
- : unit = ()

1.10 Printf formats

There is a printf function in the Printf[26.36] module (see chapter 2) that allows you to make
formatted output more concisely. It follows the behavior of the printf function from the C standard
library. The printf function takes a format string that describes the desired output as a text
interspered with specifiers (for instance %d, %f). Next, the specifiers are substituted by the following
arguments in their order of apparition in the format string:

# Printf.printf "%i + %i is an integer value, %F * %F is a float, %S\n"

# 32 4.5 1. "this is a string";;

3 + 2 is an integer value, 4.5 * 1. is a float, "this is a string"

- : unit = ()

The OCaml type system checks that the type of the arguments and the specifiers are compatible.
If you pass it an argument of a type that does not correspond to the format specifier, the compiler
will display an error message:

# Printf.printf "Float value: JF" 42;;

Error: This expression has type int but an expression was expected of type
float
Hint: Did you mean °42.'7

The fprintf function is like printf except that it takes an output channel as the first argument.
The %a specifier can be useful to define custom printer (for custom types). For instance, we can
create a printing template that converts an integer argument to signed decimal:

# let pp_int ppf n = Printf.fprintf ppf "Jd" n;;
val pp_int : out_channel -> int -> unit = <fun>

# Printf.printf "Outputting an integer using a custom printer: %a " pp_int 42;;
Outputting an integer using a custom printer: 42 - : unit = ()

The advantage of those printers based on the %a specifier is that they can be composed together to
create more complex printers step by step. We can define a combinator that can turn a printer for
'a type into a printer for 'a optional:
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# let pp_option printer ppf = function
# | None -> Printf.fprintf ppf "None"
# | Some v -> Printf.fprintf ppf "Some(%a)" printer v;;
val pp_option :
(out_channel -> 'a -> unit) -> out_channel -> 'a option -> unit = <fun>

# Printf.fprintf stdout
# "The current setting is %a. \nThere is only J%a\n"
# (pp_option pp_int) (Some 3)
# (pp_option pp_int) None
#55
The current setting is Some(3).
There is only None
- : unit = O
If the value of its argument its None, the printer returned by pp_option printer prints None otherwise
it uses the provided printer to print Some .
Here is how to rewrite the pretty-printer using fprintf:

# let pp_expr ppf expr =

# let open_paren prec op_prec output =

# if prec > op_prec then Printf.fprintf output "%s" "(" in

# let close_paren prec op_prec output =

# if prec > op_prec then Printf.fprintf output "%s" ")" in

# let rec print prec ppf expr =

# match expr with

# | Const ¢ -> Printf.fprintf ppf "%F" ¢

# | Var v -> Printf.fprintf ppf "/s" v

# | Sum(£f, g) —->

# open_paren prec O ppf;

# Printf.fprintf ppf "%a + %a" (print 0) f (print 0) g;
# close_paren prec O ppf

# | Diff(f, g) ->

# open_paren prec O ppf;

# Printf.fprintf ppf "%a - %a" (print 0) f (print 1) g;
# close_paren prec O ppf

# | Prod(f, g) ->

# open_paren prec 2 ppf;

# Printf.fprintf ppf "%a * %a" (print 2) f (print 2) g;
# close_paren prec 2 ppf

# | Quot(f, g ->

# open_paren prec 2 ppf;

# Printf.fprintf ppf "Ja / %a" (print 2) f (print 3) g;
# close_paren prec 2 ppf

# in print O ppf expr;;

val pp_expr : out_channel -> expression -> unit = <fun>
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# pp_expr stdout e; print_newline ();;

2. xx + 1.

- : unit = ()

# pp_expr stdout (deriv e "x"); print_newline ();;

N

. 1., + 0. *xx + 0.
:unit = ()

Due to the way that format string are build, storing a format string requires an explicit type
annotation:

+*

let str : _ format =
"%i is an integer value, %F is a float, %S\n";;

Printf.printf str 3 4.5 "string value'";;

is an integer value, 4.5 is a float, '"string value"
: unit = ()

[IECVIE - S

1.11 Standalone OCaml programs

All examples given so far were executed under the interactive system. OCaml code can also be com-
piled separately and executed non-interactively using the batch compilers ocamlc and ocamlopt.
The source code must be put in a file with extension .m1l. It consists of a sequence of phrases, which
will be evaluated at runtime in their order of appearance in the source file. Unlike in interactive
mode, types and values are not printed automatically; the program must call printing functions
explicitly to produce some output. The ;; used in the interactive examples is not required in
source files created for use with OCaml compilers, but can be helpful to mark the end of a top-level
expression unambiguously even when there are syntax errors. Here is a sample standalone program
to print the greatest common divisor (ged) of two numbers:

(* File gcd.ml *)
let rec gcd a b =
if b = 0 then a
else gcd b (a mod b);;

let main () =
let a = int_of_string Sys.argv. (1) in
let b = int_of_string Sys.argv.(2) in
Printf.printf "%d\n" (gcd a b);
exit 0;;
main Q) ;;
Sys.argv is an array of strings containing the command-line parameters. Sys.argv. (1) is thus

the first command-line parameter. The program above is compiled and executed with the following
shell commands:

$ ocamlc -o gcd ged.ml
$ ./gcd 6 9
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3
$ ./fib 7 11
1

More complex standalone OCaml programs are typically composed of multiple source files, and
can link with precompiled libraries. Chapters 9 and 12 explain how to use the batch compilers
ocamlc and ocamlopt. Recompilation of multi-file OCaml projects can be automated using third-
party build systems, such as the ocamlbuild compilation manager.


https://github.com/ocaml/ocamlbuild/

Chapter 2

The module system

This chapter introduces the module system of OCaml.

2.1 Structures

A primary motivation for modules is to package together related definitions (such as the definitions
of a data type and associated operations over that type) and enforce a consistent naming scheme for
these definitions. This avoids running out of names or accidentally confusing names. Such a package
is called a structure and is introduced by the struct...end construct, which contains an arbitrary
sequence of definitions. The structure is usually given a name with the module binding. Here is
for instance a structure packaging together a type of priority queues and their operations:

# module PrioQueue =
# struct

if lprio <= rprio
then Node(lprio, lelt, remove_top left, right)

# type priority = int

# type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue
# let empty = Empty

# let rec insert queue prio elt =

# match queue with

# Empty -> Node(prio, elt, Empty, Empty)

# | Node(p, e, left, right) ->

# if prio <=p

# then Node(prio, elt, insert right p e, left)

# else Node(p, e, insert right prio elt, left)

# exception Queue_is_empty

# let rec remove_top = function

# Empty -> raise Queue_is_empty

# | Node(prio, elt, left, Empty) -> left

# | Node(prio, elt, Empty, right) -> right

# | Node(prio, elt, (Node(lprio, lelt, _, _) as left),

# (Node(rprio, relt, _, _) as right)) ->
#

#
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else Node(rprio, relt, left, remove_top right)
let extract = function
Empty -> raise Queue_is_empty
| Node(prio, elt, _, _) as queue -> (prio, elt, remove_top queue)

end;;
module PrioQueue :
sig

type priority = int

type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue

H OH H H

val empty : 'a queue

val insert : 'a queue -> priority -> 'a -> 'a queue

exception (ueue_is_empty

val remove_top : 'a queue -> 'a queue

val extract : 'a queue -> priority * 'a * 'a queue
end

Outside the structure, its components can be referred to using the “dot notation”, that is, identifiers
qualified by a structure name. For instance, PrioQueue. insert is the function insert defined in-
side the structure PrioQueue and PrioQueue.queue is the type queue defined in PrioQueue.

# PrioQueue.insert PrioQueue.empty 1 "hello";;
- : string PrioQueue.queue =
PrioQueue.Node (1, "hello", PrioQueue.Empty, PrioQueue.Empty)

Another possibility is to open the module, which brings all identifiers defined inside the module
in the scope of the current structure.

# open PrioQueue;;

# insert empty 1 "hello";;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

Opening a module enables lighter access to its components, at the cost of making it harder to
identify in which module a identifier has been defined. In particular, opened modules can shadow
identifiers present in the current scope, potentially leading to confusing errors:

# let empty = []
# open PrioQueue; ;
val empty : 'a list = []

# let x =1 :: empty ;;

Error: This expression has type 'a PrioQueue.queue
but an expression was expected of type int list

A partial solution to this conundrum is to open modules locally, making the components of
the module available only in the concerned expression. This can also make the code easier to read
— the open statement is closer to where it is used— and to refactor — the code fragment is more
self-contained. Two constructions are available for this purpose:

# let open PrioQueue in
# insert empty 1 "hello";;



Chapter 2. The module system 35

- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)
and

# PrioQueue. (insert empty 1 "hello");;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

In the second form, when the body of a local open is itself delimited by parentheses, braces or
bracket, the parentheses of the local open can be omitted. For instance,

# PrioQueue. [empty] = PrioQueue. ([emptyl);;

- : bool = true

# PrioQueue.[|lemptyl] = PrioQueue. ([|lemptyl]l);;
- : bool = true

# PrioQueue.{ contents = empty } = PrioQueue.({ contents = empty });;
- : bool = true
becomes

# PrioQueue. [insert empty 1 "hello"];;
- : string PrioQueue.queue list = [Node (1, "hello", Empty, Empty)]

This second form also works for patterns:

# let at_most_one_element x = match x with
# | PrioQueue.( Empty| Node (_,_, Empty,Empty) ) -> true

# | _ -> false ;;
val at_most_one_element : 'a PrioQueue.queue -> bool = <fun>

It is also possible to copy the components of a module inside another module by using an
include statement. This can be particularly useful to extend existing modules. As an illustration,
we could add functions that returns an optional value rather than an exception when the priority
queue is empty.

# module PrioQueueOpt =

# struct
# include PrioQueue
# let remove_top_opt x =
# try Some(remove_top x) with Queue_is_empty -> None
# let extract_opt x =
# try Some(extract x) with Queue_is_empty -> None
# end;;
module PrioQueueOpt :
sig

int

type priority

type 'a queue

'a PrioQueue.queue =
Empty
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| Node of priority * 'a * 'a queue * 'a queue

val empty : 'a queue

val insert : 'a queue -> priority -> 'a -> 'a queue

exception (ueue_is_empty

val remove_top : 'a queue -> 'a queue

val extract : 'a queue -> priority * 'a * 'a queue

val remove_top_opt : 'a queue -> 'a queue option

val extract_opt : 'a queue -> (priority * 'a * 'a queue) option
end

2.2 Signatures

Signatures are interfaces for structures. A signature specifies which components of a structure
are accessible from the outside, and with which type. It can be used to hide some components
of a structure (e.g. local function definitions) or export some components with a restricted type.
For instance, the signature below specifies the three priority queue operations empty, insert and
extract, but not the auxiliary function remove_top. Similarly, it makes the queue type abstract
(by not providing its actual representation as a concrete type).

# module type PRIOQUEUE =

# sig
# type priority = int (x still concrete )
# type 'a queue (* now abstract *)
# val empty : 'a queue
# val insert : 'a queue -> int -> 'a -> 'a queue
# val extract : 'a queue -> int * 'a * 'a queue
# exception Queue_is_empty
# end;;
module type PRIOQUEUE =
sS1g

type priority = int
type 'a queue

val empty : 'a queue
val insert : 'a queue -> int -> 'a -> 'a queue
val extract : 'a queue -> int * 'a * 'a queue
exception (ueue_is_empty

end

Restricting the PrioQueue structure by this signature results in another view of the PrioQueue
structure where the remove_top function is not accessible and the actual representation of priority
queues is hidden:

# module AbstractPrioQueue = (PrioQueue : PRIOQUEUE);;
module AbstractPrioQueue : PRIOQUEUE

# AbstractPrioQueue.remove_top ;;

Error: Unbound value AbstractPrioQueue.remove_top
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# AbstractPrioQueue.insert AbstractPrioQueue.empty 1 "hello";;
- : string AbstractPrioQueue.queue = <abstr>

The restriction can also be performed during the definition of the structure, as in
module PrioQueue = (struct ... end : PRIOQUEUE);;

An alternate syntax is provided for the above:
module PrioQueue : PRIOQUEUE = struct ... end;;

Like for modules, it is possible to include a signature to copy its components inside the current
signature. For instance, we can extend the PRIOQUEUE signature with the extract_opt function:

# module type PRIOQUEUE_WITH_OPT =

# sig
# include PRIOQUEUE
# val extract_opt : 'a queue -> (int * 'a * 'a queue) option
# end;;
module type PRIOQUEUE_WITH_OPT =
sig

type priority = int
type 'a queue

val empty : 'a queue

val insert : 'a queue -> int -> 'a -> 'a queue

val extract : 'a queue -> int * 'a * 'a queue

exception (ueue_is_empty

val extract_opt : 'a queue -> (int * 'a * 'a queue) option
end

2.3 Functors

Functors are “functions” from modules to modules. Functors let you create parameterized modules
and then provide other modules as parameter(s) to get a specific implementation. For instance,
a Set module implementing sets as sorted lists could be parameterized to work with any module
that provides an element type and a comparison function compare (such as OrderedString):

# type comparison = Less | Equal | Greater;;
type comparison = Less | Equal | Greater

# module type ORDERED_TYPE =

# sig

# type t

# val compare: t -> t -> comparison
# end;;

module type OURDERED_TYPE = sig type t val compare : t -> t -> comparison end
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# module Set =
functor (El1t: ORDERED_TYPE) ->
struct
type element = Elt.t
type set = element list
let empty = []
let rec add x s =
match s with

0 -> [x]
| hd::tl ->
match Elt.compare x hd with
Equal ->'s (x x is already in s *)
| Less -> x :: 8 (* x is smaller than all elements of s *)

| Greater -> hd :: add x tl
let rec member x s =

#
#
#
#
#
#
#
#
#
#
#
#
#
#
# match s with
#
#
#
#
#
#
#

[1 -> false
| hd::tl ->
match Elt.compare x hd with
Equal -> true (* x belongs to s *)
| Less -> false (* x is smaller than all elements of s *)
| Greater —-> member x tl
end;;
module Set :
functor (E1t : ORDERED_TYPE) ->
sig

type element = Elt.t

type set = element list

val empty : 'a list

val add : Elt.t -> Elt.t list -> Elt.t list

val member : Elt.t -> Elt.t list -> bool
end

By applying the Set functor to a structure implementing an ordered type, we obtain set operations
for this type:

# module OrderedString =
#  struct

# type t = string
# let compare x y = if x = y then Equal else if x < y then Less else Greater
# end;;
module OrderedString :
sig type t = string val compare : 'a -> 'a -> comparison end

# module StringSet = Set(OrderedString);;
module StringSet :
sig
type element = OrderedString.t
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type set = element list
val empty : 'a list

val add : OrderedString.t -> OrderedString.t list —-> OrderedString.t list
val member : OrderedString.t -> OrderedString.t list -> bool

end

# StringSet.member "bar" (StringSet.add "foo" StringSet.empty);;

- : bool = false

2.4 Functors and type abstraction

39

As in the PrioQueue example, it would be good style to hide the actual implementation of the
type set, so that users of the structure will not rely on sets being lists, and we can switch later to
another, more efficient representation of sets without breaking their code. This can be achieved by

restricting Set by a suitable functor signature:

# module type SETFUNCTOR =
# functor (Elt: ORDERED_TYPE) ->

sig
type element = Elt.t (* concrete x)
type set (x abstract *)

val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end;;
module type SETFUNCTOR =
functor (E1t : ORDERED_TYPE) ->
sig
type element = Elt.t
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

H OH HF H H H R

# module AbstractSet = (Set : SETFUNCTOR);;
module AbstractSet : SETFUNCTOR

# module AbstractStringSet = AbstractSet(OrderedString);;
module AbstractStringSet :
sig
type element = OrderedString.t
type set = AbstractSet (OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end
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# AbstractStringSet.add "gee" AbstractStringSet.empty;;
- : AbstractStringSet.set = <abstr>

In an attempt to write the type constraint above more elegantly, one may wish to name the
signature of the structure returned by the functor, then use that signature in the constraint:

# module type SET =
# sig

type element

type set

val empty : set

val add : element -> set -> set

val member : element -> set -> bool
end;;

H OH HF H H H

module type SET =
sig
type element
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

# module WrongSet = (Set : functor(Elt: ORDERED_TYPE) -> SET);;
module WrongSet : functor (Elt : ORDERED_TYPE) -> SET

# module WrongStringSet = WrongSet (OrderedString);;
module WrongStringSet :
sig
type element = WrongSet (OrderedString).element
type set = WrongSet (OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

# WrongStringSet.add "gee" WrongStringSet.empty ;;

Error: This expression has type string but an expression was expected of type
WrongStringSet.element = WrongSet (OrderedString).element

The problem here is that SET specifies the type element abstractly, so that the type equality
between element in the result of the functor and t in its argument is forgotten. Consequently,
WrongStringSet.element is not the same type as string, and the operations of WrongStringSet
cannot be applied to strings. As demonstrated above, it is important that the type element in the
signature SET be declared equal to E1t.t; unfortunately, this is impossible above since SET is defined
in a context where E1t does not exist. To overcome this difficulty, OCaml provides a with type
construct over signatures that allows enriching a signature with extra type equalities:

# module AbstractSet2 =
# (Set : functor(Elt: ORDERED_TYPE) -> (SET with type element = Elt.t));;
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module AbstractSet2 :
functor (El1t : ORDERED_TYPE) ->

sig
type element = Elt.t
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool

end

As in the case of simple structures, an alternate syntax is provided for defining functors and
restricting their result:

module AbstractSet2(Elt: ORDERED_TYPE) : (SET with type element = Elt.t) =
struct ... end;;

Abstracting a type component in a functor result is a powerful technique that provides a high
degree of type safety, as we now illustrate. Consider an ordering over character strings that is
different from the standard ordering implemented in the OrderedString structure. For instance,
we compare strings without distinguishing upper and lower case.

# module NoCaseString =
#  struct
# type t = string
# let compare sl s2 =
# OrderedString.compare (String.lowercase_ascii s1) (String.lowercase_ascii s2)
# end;;
module NoCaseString :
sig type t = string val compare : string -> string —-> comparison end

# module NoCaseStringSet = AbstractSet(NoCaseString);;
module NoCaseStringSet :
sig
type element = NoCaseString.t
type set = AbstractSet(NoCaseString).set
val empty : set
val add : element -> set -> set
val member : element -> set —> bool
end

# NoCaseStringSet.add "FOO" AbstractStringSet.empty ;;

Error: This expression has type
AbstractStringSet.set = AbstractSet (OrderedString).set
but an expression was expected of type
NoCaseStringSet.set = AbstractSet (NoCaseString).set

Note that the two types AbstractStringSet.set and NoCaseStringSet.set are not compatible,
and values of these two types do not match. This is the correct behavior: even though both
set types contain elements of the same type (strings), they are built upon different orderings
of that type, and different invariants need to be maintained by the operations (being strictly
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increasing for the standard ordering and for the case-insensitive ordering). Applying operations
from AbstractStringSet to values of type NoCaseStringSet.set could give incorrect results, or
build lists that violate the invariants of NoCaseStringSet.

2.5 Modules and separate compilation

All examples of modules so far have been given in the context of the interactive system. However,
modules are most useful for large, batch-compiled programs. For these programs, it is a practi-
cal necessity to split the source into several files, called compilation units, that can be compiled
separately, thus minimizing recompilation after changes.

In OCaml, compilation units are special cases of structures and signatures, and the relationship
between the units can be explained easily in terms of the module system. A compilation unit A
comprises two files:

o the implementation file A.ml, which contains a sequence of definitions, analogous to the inside
of a struct...end construct;

o the interface file A.mli, which contains a sequence of specifications, analogous to the inside
of a sig...end construct.

These two files together define a structure named A as if the following definition was entered at
top-level:

module A: sig (* contents of file A.mli *) end
= struct (* contents of file A.ml *) end;;

The files that define the compilation units can be compiled separately using the ocamlc -c
command (the —c option means “compile only, do not try to link”); this produces compiled interface
files (with extension .cmi) and compiled object code files (with extension .cmo). When all units
have been compiled, their .cmo files are linked together using the ocamlc command. For instance,
the following commands compile and link a program composed of two compilation units Aux and
Main:

$ ocamlc -c Aux.mli # produces aux.cmi
$ ocamlc -c Aux.ml # produces aux.cmo
$ ocamlc -c Main.mli # produces main.cmi
$ ocamlc -c Main.ml # produces main.cmo
$ ocamlc -o theprogram Aux.cmo Main.cmo

The program behaves exactly as if the following phrases were entered at top-level:

module Aux: sig (* contents of Aux.mli *) end

= struct (* contents of Aux.ml *) end;;
module Main: sig (* contents of Main.mli *) end

= struct (* contents of Main.ml *) end;;

In particular, Main can refer to Aux: the definitions and declarations contained in Main.ml and
Main.mli can refer to definition in Aux.ml, using the Aux.ident notation, provided these definitions
are exported in Aux.mli.
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The order in which the .cmo files are given to ocamlc during the linking phase determines the
order in which the module definitions occur. Hence, in the example above, Aux appears first and
Main can refer to it, but Aux cannot refer to Main.

Note that only top-level structures can be mapped to separately-compiled files, but neither
functors nor module types. However, all module-class objects can appear as components of a
structure, so the solution is to put the functor or module type inside a structure, which can then
be mapped to a file.
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Chapter 3

Objects in OCaml

(Chapter written by Jérome Vouillon, Didier Rémy and Jacques Garrigue)

This chapter gives an overview of the object-oriented features of OCaml.

Note that the relationship between object, class and type in OCaml is different than in main-
stream object-oriented languages such as Java and C++, so you shouldn’t assume that similar
keywords mean the same thing. Object-oriented features are used much less frequently in OCaml
than in those languages. OCaml has alternatives that are often more appropriate, such as modules
and functors. Indeed, many OCaml programs do not use objects at all.

3.1 Classes and objects

The class point below defines one instance variable x and two methods get_x and move. The
initial value of the instance variable is 0. The variable x is declared mutable, so the method move
can change its value.

# class point =
# object
val mutable x = 0
method get_x = x
method move d = x <- x + d
end;;
class point :
object val mutable x : int method get_x : int method move : int -> unit end

#
#
#
#

We now create a new point p, instance of the point class.

# let p = new point;;

val p : point = <obj>

Note that the type of p is point. This is an abbreviation automatically defined by the class
definition above. It stands for the object type <get_x : int; move : int -> unit>, listing the

methods of class point along with their types.
We now invoke some methods of p:

# pHget_x;;
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- : int = 0
# p#move 3;;
- : unit = ()
# pHget_x;;
- : int = 3

The evaluation of the body of a class only takes place at object creation time. Therefore, in
the following example, the instance variable x is initialized to different values for two different
objects.

# let x0 = ref O;;
val x0 : int ref = {contents = O}

class point =
object
val mutable x = incr x0; !x0
method get_x = x
method move d = x <- x + d
end;;
class point :
obje