Ngspice User’s Manual
Version 45
(ngspice release version)

Holger Vogt, Giles Atkinson, Paolo Nenzi
September 1st, 2025

Locations

The project and download pages of ngspice may be found at

Ngspice home page https://ngspice.sourceforge.io/

Project page at SourceForge https://sourceforge.net/projects/ngspice/

Download page at SourceForge https://sourceforge.net/projects/ngspice/files/ng-spice-rework/

Git source download https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/

Status

This manual is a work in progress. Some to-dos are listed in Chapt. 20.3. More is surely
needed. You are invited to report bugs, missing items, wrongly described items, bad English
style, etc. The preferred place for such reports is our bug tracker.

How to use this Manual

The manual is a “work in progress.” It may accompany a specific ngspice release, e.g. ngspice-
44 as manual version 44. If its name contains ‘Version xxplus’, it describes the actual code
status, found at the date of issue in the Git Source Code Management (SCM) tool. This manual
is intended to provide a complete description of ngspice’s functionality, features, commands,
and procedures. This manual is not a book about learning SPICE usage, however the novice
user may find some hints how to start using ngspice. Chapter 17.1 gives a short introduction
how to set up and simulate a small circuit. Chapter 28 is about compiling and installing ngspice
from a tarball or the actual Git source code, which you may find on the ngspice web pages. If
you are running a specific Linux distribution, you may check if it provides ngspice as part of
the package. Some are listed here.

License

This document is covered by the Creative Commons Attribution Share-Alike (CC-BY-SA)
v4.0..

Part of chapters 12 and 25-29 are in the public domain.
Chapter 30 is covered by New BSD (chapt. 29.3.2).

https://ngspice.sourceforge.io/
https://sourceforge.net/projects/ngspice/
https://sourceforge.net/projects/ngspice/files/ng-spice-rework/
https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/
https://sourceforge.net/p/ngspice/bugs/
http://ngspice.sourceforge.net/download.html
http://ngspice.sourceforge.net/packages.html
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Contents

I Ngspice User’s Manual 29
1 Introduction 35
1.1 Simulation Algorithms L 36
1.1.1 Analog Simulation 36

1.1.2 Matrix solvers 36

1.1.3 Device Models for Analog Simulation 37

1.1.4 Digital Simulation L L 37

1.1.5 Mixed-Signal Simulation 37

1.1.6 Mixed-Level Simulation (Electronicand TCAD) 38

1.2 Supported Analyses e 39
1.2.1 DCAnalysis e 40

1.2.2 AC Small-Signal Analysis 40

1.2.3 Transient Analysiso 40

1.2.4 Pole-Zero Analysis e 41

1.2.5 Small-Signal Distortion Analysis 41

1.2.6 Sensitivity Analysis 41

1.277 Noise Analysis 42

1.2.8 Periodic Steady State Analysis 42

1.3 Analysis at Different Temperatures 42
1.3.1 Introduction 42

1.3.2 Controlling the temperature 44

L4 COonvergence v v v v i vt e e e e e e e 45
1.4.1 Voltage convergence Criterion v v v v v 45

1.4.2 Current convergence Criterion v v v v v v v . 46

1.4.3 Convergence failure 46

4 CONTENTS
2 Circuit Description 47
2.1 General Structure and Conventions 47
2.1.1 Inputfilestructure 47

2.1.2 Syntaxcheck 47

2.1.3 Some naming CONVeNntions v v v v v v 48

2.1.4 Topological constraints 49

22 Dotcommands 49
2.3 Circuit elements (device InStances) vt i e e e 51
24 Basiclines 53
24.1 TITLEline o et et 53

242 ENDLine 53

243 Comments e e e e e e e e e e e 54

24.4 End-of-linecomments 54

24.5 Continuationlines oL o 54

2.5 .MODEL Device Models 55
2.6 .SUBCKT Subcircuits e 56
2.6.1 SUBCKTLine it 56

262 ENDSLine. e 57

2.6.3 SubcircuitCalls L 57

27 GLOBAL e 58
2.8 INCLUDE e 58
29 INCPSLT e 58
2,10 LIB . . . o e 59
2.11 .PARAM Parametricnetlists 59
211.1 paramline 59
2.11.2 Brace expressions in circuit elements: 60
2.11.3 Subcircuit parameters 61
2.11.4 Symbolscope e 62
2.11.5 Syntax of eXpressions i e e e e e 62
2.11.6 Reservedwords 65
2.11.7 A word of caution on the three ngspice expression parsers 65

2,12 FUNC e e 65
2.13 .CSPARAM e 66
2.14 TEMP o 66
2.15 .IF Condition-Controlled Netlist 67

CONTENTS

2.16 Parameters, functions, expressions, and command scripts
2.16.1 Parameters
2.16.2 Nonlinearsources. o v v v

2.16.3 Control commands, Command scripts

3 Circuit Elements and Models

3.1 About netlists, device instances, models and model parameters . .

3.2 Generaloptions
3.2.1 Paralleling devices with multiplierm
3.2.2 Instance and model parameters
323 Modelbinning L oL
3.2.4 Inmitial conditionso

3.3 Elementary Devices
33.1 Resistors
3.3.2 Semiconductor Resistors
3.3.3 Semiconductor Resistor Model (R)
3.3.4 Resistors, dependent on expressions (behavioral resistor) .
3.3.5 Resistor with nonlinear r2_cmc or r3_cmc models
33.6 Capacitors
3.3.7 Semiconductor Capacitors
3.3.8 Semiconductor Capacitor Model (C)
3.3.9 Capacitors, dependent on expressions (behavioral capacitor)
3.3.10 Inductors
3.3.11 Inductormodel
3.3.12 Coupled (Mutual) Inductors
3.3.13 Inductors, dependent on expressions (behavioral inductor)
3.3.14 Capacitor or inductor with initial conditions
3.3.15 Switches
3.3.16 Switch Model (SW/CSW)

4 Voltage and Current Sources
4.1 Independent Sources for Voltage or Current
41.1 Pulse
412 Sinusoidal L oo
413 Exponential L Lo
414 Piece-WiseLinear

68
68
68
68

71
71
73
73
75
75
75
76
76
78
78
80
80
81
82
82
83
85
85
87
88
89
90
91

6 CONTENTS
4.1.5 Single-Frequency FM oo . 97

4.1.6 Amplitude modulated source (AM) 97

4.1.7 Transient NOISe SOUICE « . v v v v v v v et et et e e 98

4.1.8 Randomvoltagesource 99

4.1.9 External voltage or currentinput 100
4.1.10 Arbitrary Phase Sources L oL 100
4.1.11 RFPort 101

4.2 Linear Dependent Sources oo 101
4.2.1 Gxxxx: Linear Voltage-Controlled Current Sources (VCCS) 101

4.2.2 Exxxx: Linear Voltage-Controlled Voltage Sources (VCVS) 102

4.2.3 Fxxxx: Linear Current-Controlled Current Sources (CCCS) 102

4.2.4 Hxxxx: Linear Current-Controlled Voltage Sources (CCVS) 102

4.2.5 Polynomial Source Compatibility 103

5 Non-linear Dependent Sources (Behavioral Sources) 105
5.1 Bxxxx: Nonlinear dependent source (ASRC) 105
5.1.1 Syntaxandusage 105

5.1.2 Special B-Source Variables time, temper, hertz 109

5.1.3 parCexpression’) e 109

5.1.4 Piecewise Linear Function: pwl 109

5.2 Exxxx: non-linear voltage source 112
521 VOL . . e 112

522 VALUE e 113

523 TABLE 113

524 POLY 113

525 LAPLACE e 113

52.6 FREQ e 114

5277 AND/OR/NAND/NOR 115

5.3 Gxxxx: non-linear currentsourcel o .. 115
53.1 CUR .. e 115

532 VALUE e 116

533 TABLE 116

534 POLY 116

535 LAPLACE e 116

53.6 FREQ e 117

CONTENTS

5.4
5.5

6.1
6.2

6.3

6.4

7.1
7.2

7.3

7.4

7.5

5.3.7

Example

Debugging a behavioral source L.

POLY Sources o e

5.5.1
552

E voltage source, G current source

F voltage source, H current source

Transmission Lines

Lossless Transmission Lines

Lossy Transmission Lines

6.2.1

Lossy Transmission Line Model (LTRA)

Uniform Distributed RC Lines

6.3.1

Uniform Distributed RC Model (URC)

KSPICE Lossy Transmission Lines

6.4.1
6.4.2

Single Lossy Transmission Line (TXL)
Coupled Multiconductor Line (CPL)

Device Models

Instance lines and .model lines

Junction Diodes L e

7.2.1
7.2.2
7.2.3
BIT

7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6

DiodeModel (D)
Diode Equations
Diode models available via OpenVAF/OSDI
Bipolar Junction Transistors (BJTs)
BIT Models (NPN/PNP),
Gummel-PoonModels

VBIC Model

JEETSs . . . o e

7.4.1
7.4.2
7.4.3
7.4.4
7.4.5

Junction Field-Effect Transistors JFETs)
JFET Models (NJF/PJF)
Basic model statement Lo
JFET level 1 model with Parker Skellern modification
JFET level 2 Parker Skellernmodel

MESFETs e

117
117
118
119
119

121
121
122
122
124
124
125
126
126

8 CONTENTS
7.5.1 MESFET devices 154

7.5.2 MESFET Models (NMF/PMF) 154

7.53 Modelby Statze.a. 154

7.54 Model by Ytterdale.a., 155

7.5.5 hfetlandhfet2 oo 155

7.6 MOSFETSs e 156
7.6.1 MOSFET devices it iie 156

7.6.2 MOSFET models (NMOS/PMOS) 157

7.63 BSIMModels. 162

7.6.4 BSIMSOI models (levels 10, 58, 55,56,57) 166

7.6.5 SOI3model (level 60) 166

7.6.6 HiSIM models of the University of Hiroshima 166

7.6.7 MOS models available via OpenVAF/OSDI 166

7.7 Power MOSFET model (VDMOS) 167
8 Mixed-Mode and Behavioral Modeling with XSPICE 175
8.1 Code Model Element & MODEL Cards 175
8.1.1 Syntax 175

8.1.2 Examples 179

8.1.3 Searchpathforfileinput 180

8.1.4 Code model location and assessment 180

8.2 AnalogModels e 181
82.1 Gain. 181

822 Summer e 182
823 Multiplier 183

824 Divider 184

8.2.5 Limiter e 185

8.2.6 Controlled Limiter 187

8.2.7 PWL Controlled Source 188

8.2.8 PWL Time Controlled Source with optional edge smoothing 190

8.2.9 Filesource (PWL sourced fromfile) 193
8.2.10 Multi_input PWL _block L. 194
8.2.11 AnalogSwitch 195
8.2.12 Alternative Analog Switch 197
8.2.13 ZenerDiode 198

CONTENTS 9

8.3

8.4

8.2.14 CurrentLimiter 199
8.2.15 HysteresisBlock 202
8.2.16 Differentiator L 203
8.2.17 Integrator e e e e e 205
8.2.18 S-Domain Transfer Function 206
8.2.19 PWL Transfer Function 209
8.2.20 SlewRateBlock 211
8.2.21 Inductive Coupling 212
8.2.22 MagneticCore e 213
8.2.23 Controlled Sine Wave Oscillator 217
8.2.24 Controlled Triangle Wave Oscillator 218
8.2.25 Controlled Square Wave Oscillator 219
8.2.26 Controlled One-Shot 221
8.2.27 Capacitance Meter e 223
8.2.28 Inductance Metero 224
8.2.20 MemriStor e e e e 224
8.2.30 2Dtablemodel 225
8.231 3Dtablemodel L 227
8.2.32 Simple Diode Model 229
8.2.33 Analogdelay 231
8.2.34 Potentiometer e e e e 232
Hybrid Models e 234
8.3.1 Digital-to-Analog Node Bridge 234
8.3.2 Analog-to-Digital Node Bridge 235
8.3.3 Bidirectional Analog/Digital Node Bridge 237
8.3.4 Controlled Digital Oscillator 240
8.3.5 Node bridge from digital to real withenable 241
8.3.6 A Z*¥*-1block workingonrealdata 242
8.3.7 A gain block for event-drivenrealdata. 242
8.3.8 Node bridge from real to analog voltage 243
8.3.9 Controlled PWM Oscillator 243
Digital Models e 245
84.1 Buffer. 247
8.4.2 Inverter 247

843 And e 248

10

8.5

8.6

CONTENTS

844 Nand 249
845 Or e 249
84.6 NoOr e 250
84T Xor 250
84.8 Xnor ... 251
8.4.9 Tristate e e 251
84.10 Pullup o . 253
8.4.11 Pulldown 253
84.12 DFlipFlop e 254
84.13 JKFlipFlop 256
84.14 ToggleFlipFlop 258
8.4.15 Set-ResetFlipFlop 260
84.16 DLatch 262
8.4.17 Set-ResetLatch 264
84.18 StateMachine. L L L 266
8.4.19 Frequency Divider 269
8420 RAM e 270
8.4.21 Digital Source e 273
8.4.22 LUT o e 274
84.23 General LUT 275
8.4.24 D_Process v v vt e e e e e 277
8.4.25 d_cosim e e 279
Transmission linesmodels Lo L L. 281
8.5.1 Generic transmissionline 0oL 281
8.5.2 Genericcoupledlines., 283
8.53 Microstipline 286
8.54 Coupledmicrostrip e 290
8.5.5 Microstripopenend 295
Predefined Node Types for event driven simulation 297
8.6.1 Digital Node Type 297
8.6.2 RealNodeType. 297
8.6.3 IntNodeType 298
8.6.4 (Digital) Input/Output 298

8.7 Automatic insertion of bridging devices oL 298

CONTENTS 11

9 Verilog-A Compact Device Models 301
9.1 Introduction e 301
9.2 OSDI/OpenVAF o . e 301
9.3 How tocreate and apply OpenVAFmodels 302

9.3.1 Preparing for simulation 302
9.3.2 OSDI/OpenVAF examples distributed with ngspice 304

10 Digital Device Models 305

10.1 U devices (basic digital building blocks) 305
10.1.1 General format 306
10.1.2 List of devices available in ngspice (basic types) 306
10.1.3 URC transmission line versus U devices 307

10.2 Support for standard digital devices L. 307

10.3 Digital devices defined by a Hardware Description Language 308
10.3.1 Using Verilator, Verilog, and code model d_cosim 309
10.3.2 Using Icarus Verilog, and code model d_cosim 309
10.3.3 Using GHDL and code model d_cosim. 310
10.3.4 Using independent processes (e.g. C coded), pipes, and code model

d_process e 311
10.3.5 Using Yosys to map digital Verilog onto basic code model cells 311

11 Analyses and Output Control (batch mode) 313

11.1 Simulator Variables (.options) 313
11.1.1 General Options i ittt e 314
11.1.2 OP and DC Solution Options 315
11.1.3 AC Solution Options v i v i vt et 317
11.1.4 Transient AnalysisOptions 317
11.1.5 ELEMENT Specificoptions 318
11.1.6 Transmission Lines SpecificOptions 319
11.1.7 Precedence of option and .options commands 319

11.2 Inmitial Conditions 319
11.2.1 .NODESET: Specify Initial Node Voltage Guesses 319
11.2.2 IC: Set Initial Conditions 320

I1.3 Analyses o o e e e e e e 321
11.3.1 .AC: Small-Signal AC Analysis 321

11.3.2 .DC: DC Transfer Function. 322

12

CONTENTS

11.3.3 .DISTO: Distortion Analysis 322
11.3.4 .NOISE: Noise Analysis 324
11.3.5 .OP: Operating Point Analysis 325
11.3.6 .PZ: Pole-Zero Analysis 327
11.3.7 .SENS: DC or Small-Signal AC Sensitivity Analysis 327
11.3.8 .SP S-Parameter Analysis 328
11.3.9 .TF: Transfer Function Analysis 329
11.3.10 . TRAN: Transient Analysis. 329
11.3.11 Transient noise analysis (at low frequency) 330
11.3.12 .PSS: Periodic Steady State Analysis 333
11.4 Measurements after AC, DC and Transient Analysis 334
11.4.1 meas(ure) o v o i e e e e e e e e 334
11.4.2 batch versus interactive mode 334
1143 Generalremarks 334
1144 Input e e 335
11.45 TrigTarg 0 o e e e e e e e 335
114.6 Find... When 337
11.4.7 AVG|MIN|MAX|PP|RMS|MIN_AT|MAX_AT 338
11.48 Integ e 338
11.4.9 param e 339
11.4.10 par(Cexpression’)o e e e e e 339
11411 Deriv oo e 340
11.4.12More examples Lo 340
11.5 Safe Operating Area (SOA) warning messages v« v v v v v v v .. 341
11.5.1 Resistor and Capacitor SOA model parameters 342
11.5.2 Diode SOA model parameters 342
11.5.3 BJT SOA model parameters 343
11.5.4 MOS SOA model parameters 344
11.5.5 VDMOS SOA model parameters 345
11.6 BatchOutput e 345
11.6.1 .SAVE: Name vector(s) to be savedinrawfile 345
11.6.2 PRINTLines ittt e 346
11.6.3 .PLOTLines it 347
11.6.4 .FOUR: Fourier Analysis of Transient Analysis Output 347

CONTENTS 13

11.6.5 .PROBE: Save device node currents, device power dissipation, or dif-

ferential voltages between arbitrarynodes 348

11.6.6 par(’expression’): Algebraic expressions for output 352
11.6.7 .width o 353

11.7 Measuring current through device terminals 353
11.7.1 Using the .probecommand 353
11.7.2 Adding a voltage source in series 353
11.7.3 Using option ’savecurrents’ v v v v v v vt 354

12 Starting ngspice 355
12.1 Introduction L e e 355
12.2 Where to obtain ngspice e 355
12.3 Command line options for starting ngspice 356
12.4 Starting OptionsS i e e e e e e e e e e e e 358
124.1 Batchmode 358
12.4.2 Interactivemode 358
12.4.3 Control mode (Interactive mode with control file or control section) . . 359

12.5 Standard configuration file spinit 360
12.6 User defined configuration file .spiceinit 362
12.7 Environmental variables L oo 363
12.7.1 Ngspice specific variables 363
12.7.2 Common environment variables 364

12.8 Memory usage v v vt e e e e e e e e e e e 364
12.9 Simulationtime L e 364
12.10Ngspice on multi-core processors using OpenMP 365
12.10.1 Introduction L 365
12.1021Internals oL 365
12.10.3Some results 366
12104 Usage o o o e e e e e 367
12.10.5 Literature oL e e e 367
12.11Servermode option -S L. 367
12.12Pipe mode Option =P o .o e e e e e 369
12.13Ngspice control via input, output fifos, 370
12.14Compatibility e e 371

12.14.1 Compatibility mode 371

14 CONTENTS
12.142Missing functions oL e 372
12.14.3DeVICeS . . . v v v o e e e 372
12.14.4 Controls and commands 373
12.14.5 PSPICE Compatibilitymode 374
12.14.6 LTSPICE Compatibilitymode 375
12.14.7 LTSPICE/PSPICE Compatibility mode 377
12.14.8 KiCad Compatibilitymode 3717
12.14.9 Spectre Compatibilitymode, 378
12.14.1HSPICE Compatibilitymode 378

I205TeSts . o o o v o o e e e e e e 378
12.16Tools for debugging a circuitnetlist, 379
12.16.1 options and initial conditions 379
12.16.2setdebug 379
12.16.3setngdebug 379
12.16.4miscellaneous Lo 380
12.17Reporting bugs and errors L Lo 380
13 Interactive Interpreter 381
13.1 Introduction L 381
13.2 Expressions, Functions, and Constants 382
133 Plots o e 386
13.4 Command Interpretation 387
13.4.1 Ontheconsole 387
13.4.2 Scripts e e e e 387
1343 Add-ontocircuitfile o 387

13.5 Commands 388
13.5.1 Ac: Perform an AC, small-signal frequency response analysis 388
13.5.2 Alias: Create an alias foracommand 389
13.5.3 Alter: Change a device or model parameter 389
13.5.4 Altermod: Change model parameter(s) 391
13.5.5 Alterparam: Change value of a global parameter 392
13.5.6 Asciiplot: Plot values using old-style character plots 393
13.5.7 Aspice*: Asynchronous ngspicerun 393
13.5.8 Bg_ctrl**: suspend running controls until bg_run has finished 393

13.5.9 Bg_halt**: haltarun 393

CONTENTS 15

13.5.10 Bg_run**: Run analysis from the input file in the background thread . . 394

13.5.11 Bug: Output URL for ngspice bug tracker 394
13.5.12Cd: Change directory 394
13.5.13 Cdump: Dump the control flow to the screen 394
13.5.14 Circbyline: Enter a circuit lineby line 395
13.5.15 Codemodel: Load an XSPICE code model library 396
13.5.16 Compose: Compose a VECLOT v v v v v v v e e e e 397
13.5.17 Cutout: Cut out a section of all vectorsinatranplot 398
13.5.18 Dc: Perform a DC-sweep analysis 398
13.5.19 Define: Define afunction 398
13.5.20 Deftype: Define a new type for a vectororplot 399
13.5.21 Delete: Remove a trace or breakpoint 399
13.5.22 Destroy: Delete an outputdataset 399
13.5.23 Devhelp: information on available devices 400
13.5.24 Diff: Compare vectors e 401
13.5.25 Display: List known vectors and types 401
13.5.26 Echo: Printtext 401
13.5.27 Edit*: Edit the current circuit L. 402
13.5.28 Edisplay: Print a list of all the eventnodes 402
13.5.29 Eprint: Print an eventdrivennode 402
13.5.30 Eprved: Dump nodes in VCD format 402
13.5.31 Esave: Save a set of event node outputs 403
13.5.32 Fclose: close anopen filehandle 403
13.5.33 FFT: fast Fourier transform of vectors 403
13.5.34 Fopen: openatextfile 405
13.5.35 Fourier: Perform a Fourier transform 405
13.5.36 Fread: read into a variable fromatextfile 406
13.5.37 Getcwd: Print the current working directory 407
13.5.38 Gnuplot: Graphics output via gnuplot 407
13.5.39 Hardcopy: Save a plot to a file for printing 407
13.5.40 Help: Print summaries of Ngspice commands 407
13.5.41 History: Review previous commands 408
13.5.42 Inventory: Print circuit inventory L. 410
13.5.43 Iplot*: Incremental plot 411

13.5.44 Jobs*: List active asynchronous ngspiceruns 411

16

CONTENTS

13.5.45 Let: Assignavaluetoavector 411
13.5.46 Linearize: Interpolate to a linearscale 412
13.5.47 Listing: Print a listing of the current circuit 413
13.5.48 Load: Load rawfiledata 414
13.5.49 Mc_source: Reload the circuit netlist from an internal storage 414
13.5.50 Meas: Measurements on simulationdata 414
13.5.51 Mdump: Dump the matrix values to a file (or to console) 415

13.5.52 Mrdump: Dump the matrix right hand side values to a file (or to console) 415

13.5.53 Noise: Noise analysis oo 415
13.5.54 Op: Perform an operating point analysis 416
13.5.55 Option: Setangspiceoption 416
13.5.56 Plot*: Plot vectors on the display 417
13.5.57 Pre_<command>: execute commands prior to parsing the circuit 419
13.5.58 Pre_OSDI: load a *.0sdi compact device model shared library 419
13.5.59 Print: Printvalues 419
13.5.60 Psd: power spectral density of vectors 420
13.5.61 Quit: Leave Ngspice v v i vt it 420
13.5.62 Rehash: Reset internal hash tables 421
13.5.63 Remcirc: Remove the currentcircuit 421
13.5.64 Remzerovec: Remove zero length vectors 421
13.5.65 Reset: Resetan analysis 421
13.5.66 Reshape: Alter the dimensionality or dimensions of a vector 422
13.5.67 Resume: Continue a simulation afterastop 422
13.5.68 Rspice*: Remote ngspice submission 423
13.5.69 Run: Run analysis from the inputfile 423
13.5.70 Rusage: Resourceusage v v i v it 423
13.5.71 Save: Save asetofoutputs 424
13.5.72 Sens: Run a sensitivity analysis 426
13.5.73 Set: Set the valueof avariable 426
13.5.74 Setcs: Set the value of a variable, case preserved 427
13.5.75 Setcirc: Change the current circuit 428
13.5.76 Setplot: Switch the current set of vectors 428
13.5.77 Setscale: Set the scale vector for the currentplot 429
13.5.78 Setseed: Set the seed value for the random number generator 429

13.5.79 Settype: Set the typeof avector 429

CONTENTS 17

13.5.80 Shell: Call the command interpreter 430
13.5.81 Shift: Alteralistvariable 430
13.5.82 Show: Listdevice state 430
13.5.83 Showmod: List model parameter values 430
13.5.84 Snload: Load the snapshotfile 431
13.5.85 Snsave: Save a snapshotfile 432
13.5.86 Source: Read a ngspice inputfile 433
13.5.87 Sp: S-Parameter Analysis, 434
13.5.88 Spec: Create a frequency domainplot 434
13.5.89 Status: Display breakpoint information 435
13.5.90 Step: Run a fixed number of time-points 435
13.5.91 Stop: Setabreakpoint 435
13.5.92 Strcmp: Compare two Strings v vt e 436
13.5.93 Strslice: Extracta substring 436
13.5.94 Strstr: Findasubstring L oo 436
13.5.95 Sysinfo: Print system information 436
13.5.96 Tf: Run a Transfer Function analysis 437
13.5.97 Trace: Tracenodes i 438
13.5.98 Tran: Perform a transient analysis 438
13.5.99 Transpose: Swap the elements in a multi-dimensional data set 439
13.5.10Wnalias: Retractan alias 439
13.5.10Undefine: Retract a definition 439
13.5.10Dnlet: Delete the specified vector(s) 439
13.5.10Unset: Cleara variable 440
13.5.104Version: Print the version of ngspice 440
13.5.103Vhere: Identify troublesome node ordevice 441
13.5.106Nrdata: Write data to a file (simple table) 442
13.5.10'Write: Write data to a file (Spice3f5 format) 442
13.5.108Vrnodev: Write node voltage values to a file (.ic=xx format) 443
13.5.10971s2p: Write scattering parameters to file (Touchstone® format) . . . 444
13.6 Control Structures L e 444
13.6.1 While-End 444
13.6.2 Repeat-End 445
13.6.3 Dowhile-End 446

13.6.4 Foreach-End 446

18 CONTENTS
13.6.5 If-Then-Else 447
13.6.6 Label 447
13.6.7 GOtO o e 447
13.6.8 Continue 448
13.6.9 Break 448

13.7 Internally predefined variables, 448
13.8 Scripts o e e e e 457
13.8.1 Variables 457
13.8.2 Vectors o e 458
13.8.3 Assessing vectors in subcircuits L. L. L 458
13.8.4 Commands e 459
13.8.5 control structureso 459
13.8.6 Example script 'spectrum’ 463
13.8.7 Example script for random numbers 465
13.8.8 Parameter sweep e 466
13.8.9 Outputredirection 466

13.9 Scattering parameters (S-parameters) oo 468
139.1 Intro. o 468
13.9.2 S-parameter measurementbasics 468
1393 Usageof.spandsp i i 470
13.9.4 Usageofthescript 470
13.10Using shell variables 470
I13.11MISCELLANEQOUS 471
13.12Bugs e 471
14 Ngspice User Interfaces 473
14.1 MS Windows Graphical User Interface 473
142 MS Windows Console 476
143 Linux e 476
144 CygWin o e e 476
145 Errorhandling 477
14.6 Output-to-fileoptions e 477
14.6.1 Graphicsfiles L 477
14.6.2 Tabulatedfiles 483

14.7 Gnuplot e e e e e e 486

CONTENTS 19

14.7.1 Using Gnuplot to produce 1D graphs of (electrical) simulation results . 486

14.7.2 Using gnuplot to produce 2D contour plots for Cider 487

14.8 Integration with CAD software and ‘third party’ GUIs 491
148.1 KiCad e 491
1482 Xschem 491
14.8.3 Ques-S . . . 491
14.8.4 GNU Spice GUL i 491
14.8.5 XCircuit o . 492
14.8.6 GEDA e 492
14.877 MSEspice o . o e e 492
14.8.8 GNUOctave ittt 492

15 ngspice as shared library or dynamic link library 493
15.1 Compileoptions L 493
15.1.1 Howtogetthesources 493
15.1.2 Linux, MINGW,CYGWIN 493
15.1.3 MS Visual Studio 494

15.2 Linking shared ngspice to a calling application 494
15.2.1 Linking during creating thecaller 494
15.2.2 Loadingatruntime 494

15.3 Shared ngspice API 494
15.3.1 structs and types defined for transportingdata 494
15.3.2 Exported functions Lo 496
15.3.3 Callback functions 500

15.4 General remarks onusingthe API 504
15.4.1 Loadinganetlist 504
15.4.2 Running the simulation 506
1543 Accessingdata e 507
15.4.4 Altering model or device parameters 508
15.45 Output e 508
154.6 Errorhandling 508

15.5 Example applications e e 508
15.6 ngspiceparallel 509
15.6.1 Gowparallel! 509
15.6.2 Additional exported functions 510
15.6.3 Additional callback functions 511

20

16 TCLspice

16.1 tclspice framework
16.2 tclspice documentation
16.3 spicetoblt
16.4 Running TCLspice
16.5 examples

16.5.1 Active capacitor measurement

16.5.2 Optimization of a linearization circuit for a Thermistor

16.5.3 Progressivedisplay
16,6 Compiling
16.6.1 Linux
1662 MSWindows
16.7 MS Windows 32 Bitbinaries

17 Example Circuits

17.1 AC coupled transistor amplifier
17.2 Differential Pair 0oL
17.3 MOSFET Characterization
174 RTL Inverter. o i i i
17.5 Four-Bit Binary Adder (Bipolar)
17.6 Four-Bit Binary Adder MOS)

17.7 Transmission-Line Inverter

18 Statistical circuit analysis

18.1 Introduction
18.2 Using random param(eters) o v v ...
18.3 Behavioral sources (B, E, G, R, L, C) with random control
18.4 ngspice control language L.
18.5 Monte-Carlo Simulation

18.5.1 Varying model or instance parameters

18.5.2 Using the ngspice control language

18.6 Data evaluation with Gnuplot

CONTENTS

513

CONTENTS

19 Circuit optimization with ngspice
19.1 Optimizationof acircuit
19.2 ngspice optimizer using ngspice sCriptso
19.3 ngspice optimizer using tclspice Lo
19.4 ngspice optimizer using a Pythonscript
19.5 ngspice optimizer using ASCOo
19.5.1 Three stage operational amplifier.
19.5.2 Digitalinverter
1953 Bandpass
19.5.4 Class-E power amplifier

20 Notes
20.1 Glossary e e e e e e e e

20.2 Acronyms and Abbreviations Lo
203 ToDo o e

II XSPICE Software User’s Manual

21 XSPICE Basics
21.1 ngspice withthe XSPICE option
21.2 The XSPICE Code Model Subsystem
21.3 XSPICE Top-Level Diagram

22 Execution Procedures
22.1 Simulation and Modeling Overview
22.1.1 Describing the Circuit,
22.2 Circuit Description Syntax Lo
22.2.1 XSPICE Syntax Extensions

22.3 How to create code models

23 Example circuits
23.1 Amplifier with XSPICE model ‘gain®
23.2 XSPICE advancedusage
23.2.1 Circuitexample C3 e
23.2.2 Runningexample C3 o

21

547
547
548
548
548
548
549
550
552
552

553
553
554
555

561

563
563
563
564

565
565
565
571
571
573

22 CONTENTS

24 Code Models and User-Defined Nodes 587
24.1 Code Model Data Type Definitions 588
24.2 Creating Code Models 588
24.3 Creating User-Defined Nodes 589
24.4 Adding anew code model libraryo 590
24.5 Compiling and loading the new code model (library) 590
24.6 Interface SpecificationFile, 591

24.6.1 TheNameTable 593
24.6.2 ThePortTable 593
24.6.3 The Parameter Table 595
24.6.4 Static Variable Table oL, 596
247 Model Definition File oo 598
2477.1 MACIos o i e e e e 598
247.2 Function Library 607
24.8 User-Defined Node Definition File 617
24.8.1 MacCros e e e 617
24.8.2 Function Library 618
24.8.3 Example UDN Definition File 620

25 Error Messages 625
25.1 Preprocessor Error Messageso 625
25.2 Simulator Error Messages 630
25.3 Code Model Error Messages oo 631

25.3.1 Code Model aswitch 631
25.3.2 Code Model climit, 632
253.3 CodeModelcore 632
2534 CodeModeld 0SC o e 632
25.3.5 Code Modeld_source e 633
25.3.6 Code Modeld_state e 633
25.3.7 Code Modeloneshot 634
253.8 CodeModel pwl 634
25.3.9 Code Models_xfer 634
253.10Code Model sine 635
253.11Code Model square 635

25.3.12Code Model triangle L oo 636

CONTENTS

III CIDER

26 CIDER User’s Manual
26.1 SPECIFICATION e e e e e
26.1.1 Examples
26.2 BOUNDARY, INTERFACE
26.2.1 DESCRIPTION e e
26.2.2 PARAMETERS
26.2.3 EXAMPLES e
263 COMMENT e
26.3.1 DESCRIPTION it
26.3.2 EXAMPLES
26.4 CONTACT e e e e e s e s
26.4.1 DESCRIPTION it
26.42 PARAMETERS
2643 EXAMPLES
2644 SEEALSO e
26.5 DOMAIN,REGION e
26.5.1 DESCRIPTION it
26.5.2 PARAMETERS
26.53 EXAMPLES
2654 SEEALSO e
26.6 DOPING e
26.6.1 DESCRIPTION i
26.6.2 PARAMETERS
26.6.3 EXAMPLES e
26.6.4 SEEALSO e
267 ELECTRODE e
26.7.1 DESCRIPTION e
26.7.2 PARAMETERS
26.7.3 EXAMPLES
26.7.4 SEEALSO e
268 END e

269 MATERIAL

24

CONTENTS

26.9.1 DESCRIPTION it 651
26.9.2 PARAMETERS 652
26.9.3 EXAMPLES 652
2694 SEEALSO e 652
26.10METHOD e 653
26.10.1 DESCRIPTION e e 653
26.10.2 Parameterso e e e e e 653
26.10.3Examples e e 653
26.11Mobility e 654
26.11.1 Descriptiono e e e 654
26.11.2 Parameters e e e e 655
26.113Examples 655
26.114SEE ALSO e 655
26.11.5BUGS o o 656
26.12MODELS e 656
26.12.1 DESCRIPTION e 656
26.12.2 Parameterso ..o e e e e e 656
26,123 Exampleso 656
26.12.4Seealso 657
26.12.5Bugs . ..o e 657
26.130PTIONS e 657
26.13.1 DESCRIPTION e 657
26.13.2 Parameterso L. e e e e 658
26133 Exampleso 658
26.13.4Seealso 658
26.140UTPUT 659
26.14.1 DESCRIPTION it 659
26.14.2 Parameters e e e e e 660
26,143 Examples e e e e 660
26.144SEE ALSO 661
20.15TITLE o o 661
26.15.1 DESCRIPTION e 661
26.15.2 EXAMPLES 661
26.153BUGS o 661

2616 X MESH, YMESH 661

CONTENTS

26.16.1 DESCRIPTION e
26.16.2Parameterso e e e e
26.16.3EXAMPLES
26.164SEE ALSO e
260.17TNUMD e
26.17.1 DESCRIPTION et
26.17.2 Parameterso e e e e
26.17.3 EXAMPLES
26.174SEE ALSO e
26.175BUGS o e
20.18NBIT e
26.18.1 DESCRIPTION e
26.18.2Parameters o e e e e
26.18.3 EXAMPLES
26.184SEE ALSO e
26.185BUGS e
20.19NUMOS e
26.19.1 DESCRIPTION e
26.19.2Parameterso e e e e e e
26.193 EXAMPLES
26.194SEE ALSO e
26.202D contour plots L. e e e
26.21Ciderexamples L. L L e

IV Miscellaneous

27 Model and Device Parameters
27.1 Accessing internal device parameters
27.2 Elementary Devices e e e
2721 ResiStOr o e e
27.2.2 Capacitor - Fixed capacitor
27.2.3 Inductor - Fixedinductor
27.2.4 Mutual - Mutual Inductor. Lo
27.3 Voltage and current SOUICES« v v v v v v v vt e e e

27.3.1 Bxxxx - Arbitrary source (ASRC)

25

662
663
663
663
664
664
665
665
666
666
666
666
667
667
668
668
668
668
669
669
670
670
670

671

26

28

CONTENTS

27.3.2 Isource - Independent current source 681
27.3.3 Vsource - Independent voltage source 682
27.3.4 Fxxxx: Current-Controlled Current Source (CCCS) 683
27.3.5 Hxxxx: Current-Controlled Voltage Source (CCVS) 683
27.3.6 Gxxxx: Voltage-Controlled Current Source (VCCS) 684
27.3.7 Exxxx: Voltage-Controlled Voltage Source (VCVS). 684

27.4 Transmission Lines Lo 685
27.4.1 CplLines - Simple Coupled Multiconductor Lines 685
27.4.2 LTRA - Lossy transmissionline 686
27.4.3 Tranline - Lossless transmissionline 687
27.4.4 TransLine - Simple Lossy Transmission Line 688
2745 URC-UniformR.C.line 689

275 BITs . o o o o e 690
27.5.1 BJT - Bipolar Junction Transistor 690
27.5.2 VBIC - Vertical Bipolar Inter-Company Model 693

27.6 MOSFETS e 697
27.6.1 MOSI - Level 1 MOSFET model with Meyer capacitance model 697
27.6.2 MOS?2 - Level 2 MOSFET model with Meyer capacitance model 700
27.6.3 MOS3 - Level 3 MOSFET model with Meyer capacitance model 704
27.6.4 MOSG6 - Level 6 MOSFET model with Meyer capacitance model 708
27.6.5 MOS9 - Modified Level 3 MOSFET model 711
27.6.6 BSIMI - Berkeley Short Channel IGFET Model 715
27.6.7 BSIM2 - Berkeley Short Channel IGFET Model 718
27.6.8 BSIM3 e 722
27.69 BSIM4 723
Compilation notes 725
28.1 Ngspice Installation under Linux (and other "UNIXes’) 725
28.1.1 PrerequiSites e e 725
28.1.2 Install from Git 725
28.1.3 Install from a tarball, e.g. from ngspice-44.tar.gz 727
28.1.4 Compilation using an user defined directory tree for object files 728
28.1.5 ngspiceasasharedlibrary 728
28.1.6 Relative paths for spinitand code models 728
28.1.7 Installation on Red Hat or Oracle Linux (and similar, e.g. Centos) . . . 729

CONTENTS 27

29

28.1.8 AdvancedInstall 729
28.2 Ngspice Compilation under Windows OS 733
28.2.1 Building ngspice with MS Visual Studio 2022 733
28.2.2 How to make ngspice with MINGW and MSYS2 737
28.2.3 make ngspice withpure CYGWIN 740
28.2.4 ngspice mingw or cygwin console executable w/o graphics 740
28.2.5 ngspice for MS Windows, cross compiled from Linux 741
28.3 Ngspice Compilation under macOS 741
28.3.1 Prerequisites 741
28.3.2 Compiling ngspiceo 742
28.3.3 Compiling ngspice shared library 742
28.3.4 Compiling with Apple M2 743
28.4 RepOTtiNg €ITOTS v v v v v v e e e e e e e e e e e e e e 743
Copyrights and licenses 745
29.1 Documentation license 745
29.2 ngspice license e e 745
293 Somelicensedetails Lo 745
293.1 CC-BY-SA e 745
29.3.2 ‘Modified” BSD license, . 746
29.4 On the historical evolvement of the ngspice licenses 747
29.4.1 XSPICE SOFTWARE (documentation) copyright 747
29.4.2 CIDER RESEARCH SOFTWARE AGREEMENT (superseded by 29.4.3)747
29.4.3 ‘Modified’ BSDlicense 748
2944 XSPICE e 748
2945 OSDI e 748
29.4.6 tclspice, numparam e e e e 749
29.4.7 Linking to GPLd libraries (e.g. readline, fftw, table.cm): 749

Index 751

28

CONTENTS

Part I

Ngspice User’s Manual

29

Prefaces

Preface to the first edition

This manual has been assembled from different sources:

1. The spice3f5 manual,
2. the XSPICE user’s manual,

3. the CIDER user’s manual

and some original material needed to describe the new features and the newly implemented
models. This cut and paste approach, while not being orthodox, allowed ngspice to have a full
manual in a fraction of the time that writing a completely new text would have required. The
use of LaTex and LyX instead of TeXinfo, which was the original encoding for the manual,
further helped to reduce the writing effort and improved the quality of the result, at the expense
of an on-line version of the manual but, due to the complexity of the software I hardly think that
users will ever want to read an on-line text version.

In writing this text I followed the spice3f5 manual, both in the chapter sequence and presentation
of material, mostly because that was already the user manual of SPICE.

Ngspice is an open source software, users can download the source code, compile, and run it.
This manual has an entire chapter describing program compilation and available options to help
users in building ngspice (see Chapt. 28). The source package already comes with all ‘safe’
options enabled by default, and activating the others can produce unpredictable results and thus
is recommended to expert users only. This is the first ngspice manual and I have removed all
the historical material that described the differences between ngspice and spice3, since it was
of no use for the user and not so useful for the developer who can look for it in the Changelogs
of in the revision control system.

I want to acknowledge the work done by Emmanuel Rouat and Arno W. Peters for converting the
original spice3f documentation to TgXinfo. Their effort gave ngspice users the only available
documentation that described the changes for many years. A good source of ideas for this
manual came from the on-line spice3f manual written by Charles D.H. Williams (Spice3f5
User Guide), constantly updated and useful for its many insights.

As always, errors, omissions and unreadable phrases are only my fault.
Paolo Nenzi

Roma, March 24th 2001

31

http://newton.ex.ac.uk/teaching/CDHW/Electronics2/userguide/index.html#toc
http://newton.ex.ac.uk/teaching/CDHW/Electronics2/userguide/index.html#toc

32

Indeed. At the end of the day, this is engineering, and one learns to live
within the limitations of the tools.

Kevin Aylward, Warden of the King’s Ale

Preface to the current edition (as of Dec 2024)

Due to the wealth of new material and options in ngspice the actual order of chapters has been
revised. Several new chapters have been added. The LyX text processor has allowed adding
internal cross references. The PDF format has become the standard format for distribution of
the manual. There is also a xhtml version available. Within each new ngspice distribution a
manual edition is provided reflecting the ngspice status at the time of distribution. At the same
time, located at ngspice manuals, the manual is constantly updated. Every new ngspice feature
should enter this manual as soon as it has been made available in the Git source code master
branch.

Holger Vogt
Miilheim, 2024

http://ngspice.sourceforge.net/docs/ngspice-html-manual/manual.xhtml
http://ngspice.cvs.sourceforge.net/viewvc/ngspice/ngspice/ng-spice-manuals/

Acknowledgments

ngspice contributors

Spice3 and CIDER were originally written at The University of California at Berkeley (USA).
XSPICE has been provided by Georgia Institute of Technology, Atlanta (USA).

Since then, there have been many people working on the software, most of them releasing
patches to the original code through the Internet.

The following people have contributed in some way:

Vera Albrecht,
Cecil Aswell,
Giles Atkinson,
Giles C. Billingsley,
Phil Barker,
Steven Borley,
Stuart Brorson,
Alessio Cacciatori,
Mansun Chan,
Wayne A. Christopher,
Al Davis,

Glao S. Dezai,

Jon Engelbert,
Daniele Foci,
Noah Friedman,
David A. Gates,
Alan Gillespie,
John Heidemann,
Marcel Hendrix,
Jeffrey M. Hsu,
JianHui Huang,

S. Hwang,

Chris Inbody,
Gordon M. Jacobs,
Min-Chie Jeng,
Beorn Johnson,
Stefan Jones,
Kenneth H. Keller,

33

34

Francesco Lannutti,
Robert Larice,

Mathew Lew,

Robert Lindsell,
Weidong Liu,
Kartikeya Mayaram,
Richard D. McRoberts,
Manfred Metzger,

Jim Monte,

Wolfgang Muees,
Paolo Nenzi,

Gary W. Ng,

Hong June Park,
Stefano Perticaroli,
Arno Peters,
Serban-Mihai Popescu,
Georg Post,

Thomas L. Quarles,
Emmanuel Rouat,
Jean-Marc Routure,
Jaijeet S. Roychowdhury,
Lionel Sainte Cluque,
Takayasu Sakurai,
Amakawa Shuhei,
Kanwar Jit Singh,

Bill Swartz,

Hitoshi Tanaka,

Brian Taylor,

Steve Tell,

Andrew Tuckey,
Andreas Unger,
Holger Vogt,

Dietmar Warning,
Michael Widlok,
Charles D.H. Williams,
Antony Wilson,

and many others...

If someone helped in the development and has not been inserted in this list then this omis-
sion was unintentional. If you feel you should be on this list then please write to <ngspice-
devel @lists.sourceforge.net>. Do not be shy, we would like to make a list as complete as
possible.

mailto:ngspice-devel@lists.sourceforge.net
mailto:ngspice-devel@lists.sourceforge.net

Chapter 1

Introduction

Ngspice is a general-purpose circuit simulation program for nonlinear and linear analyses. Cir-
cuits may contain resistors, capacitors, inductors, mutual inductors, independent or dependent
voltage and current sources, loss-less and lossy transmission lines, switches, uniform distributed
RC lines, and the five most common semiconductor devices: diodes, BJTs, JFETs, MESFETsS,
and MOSFETs.

The most common way to use Ngspice is to start it from the OS command prompt, passing the
name of a netlist file: one containing the definition of a circuit. The largest part of this manual
is the description of such files. For a full description of starting options see Chapter 12. Input
files may also contain scripts written in Ngspice’s command language (13). Interactive user
interfaces are described in Chapter 14.

Some introductory remarks on how to use ngspice may be found in Chapter 17.

Ngspice is an update of Spice3f5, the last Berkeley’s release of Spice3 simulator family. Ngspice
is being developed to include new features to existing Spice3f5 and to fix its bugs. Improving
a complex software like a circuit simulator is a very hard task and, while some improvements
have been made, most of the work has been done on bug fixing and code refactoring.

Ngspice has built-in models for the semiconductor devices, and the user need specify only the
pertinent model parameter values.

Ngspice supports mixed-level simulation and provides a direct link between technology param-
eters and circuit performance. A mixed-level circuit and device simulator can provide greater
simulation accuracy than a stand-alone circuit or device simulator by numerically modeling the
critical devices in a circuit. Compact models can be used for all other devices. The mixed-
level extensions to ngspice is CIDER, a mixed-level circuit and device simulator integrated into
ngspice code.

Ngspice supports mixed-signal simulation through the integration of XSPICE code. XSPICE
software, developed as an extension to Spice3C1 by GeorgiaTech, has been enhanced and ported
to ngspice to provide ‘board’ level and mixed-signal simulation. Digital Verilog modules, com-
piled with Verilator or Icarus Verilog, can be attached. Communication with (C coded) pro-
cesses via pipes may be established.

The XSPICE extension enables pure digital simulation as well.

New devices can be added to ngspice by several means: behavioral B-, E- or G-sources, the
XSPICE code-model interface for C-like device coding, and Verilog-A models, when compiled
with OpenVAF, via the OSDI interface.

35

36 CHAPTER 1. INTRODUCTION

Finally, numerous small bugs have been discovered and fixed, and the program has been ported
to a wider variety of computing platforms.

1.1 Simulation Algorithms

Computer-based circuit simulation is often used as a tool by designers, test engineers, and
others who want to analyze the operation of a design without examining the physical circuit.
Simulation allows you to change quickly the parameters of many of the circuit elements to
determine how they affect the circuit response. Often it is difficult or impossible to change
these parameters in a physical circuit.

However, to be practical, a simulator must execute in a reasonable amount of time. The key to
efficient execution is choosing the proper level of modeling abstraction for a given problem. To
support a given modeling abstraction, the simulator must provide appropriate algorithms.

Historically, circuit simulators have supported either an analog simulation algorithm or a digital
simulation algorithm. Ngspice inherits the XSPICE framework and supports both analog and
digital algorithms and is a ‘mixed-mode’ simulator.

1.1.1 Analog Simulation

Analog simulation focuses on the linear and non-linear behavior of a circuit over a continuous
time or frequency interval. The circuit response is obtained by iteratively solving Kirchhoff’s
Laws for the circuit at time steps selected to ensure the solution has converged to a stable value
and that numerical approximations of integrations are sufficiently accurate. Since Kirchhoff’s
laws form a set of simultaneous equations, the simulator operates by solving a matrix of equa-
tions at each time point. This matrix processing generally results in slower simulation times
when compared to digital circuit simulators.

The response of a circuit is a function of the applied sources. Ngspice offers a variety of
source types including DC, sine-wave, and pulse. In addition to specifying sources, the user
must define the type of simulation to be run. This is termed the ‘mode of analysis’. Analysis
modes include DC analysis, AC analysis, and transient analysis. For DC analysis, the time-
varying behavior of reactive elements is neglected and the simulator calculates the DC solution
of the circuit. Swept DC analysis may also be accomplished with ngspice. This is simply the
repeated application of DC analysis over a range of DC levels for the input sources. For AC
analysis, the simulator determines the response of the circuit, including reactive elements to
small-signal sinusoidal inputs over a range of frequencies. The simulator output in this case
includes amplitudes and phases as a function of frequency. For transient analysis, the circuit
response, including reactive elements, is analyzed to calculate the behavior of the circuit as a
function of time.

1.1.2 Matrix solvers

Since version 42 ngspice offers two matrix solvers. Spice3f5 originally has used the solver
Sparse 1.3, which has proven to be robust for all simulation tasks [26]. It is especially suited
for simulating behavioral models. Optionally, to speed up the simulation of large circuits with
thousands of transistors, the KLU matrix solver [27, 28] may be selected (see chapter 11.1.1).

1.1. SIMULATION ALGORITHMS 37

1.1.3 Device Models for Analog Simulation

There are three models for bipolar junction transistors, all based on the integral-charge model
of Gummel and Poon; however, if the Gummel-Poon parameters are not specified, the basic
model (BJT) reduces to the simpler Ebers-Moll model. In either case and in either model,
charge storage effects, ohmic resistances, and a current-dependent output conductance may be
included. The second bipolar model BJT2 adds dc current computation in the substrate diode.
The third model (VBIC) contains further enhancements for advanced bipolar devices.

The semiconductor diode model can be used for either junction diodes or Schottky barrier
diodes. There are two models for JFET: the first (JFET) is based on the model of Shichman
and Hodges, the second (JFET2) is based on the Parker-Skellern model. All the original six
MOSFET models are implemented: MOSI is described by a square-law I-V characteristic,
MOS?2 [28] is an analytical model, while MOS3 [28] is a semi-empirical model; MOS6 [2] is a
simple analytic model accurate in the short channel region; MOS9, is a slightly modified Level
3 MOSFET model - not to confuse with Philips level 9; BSIM 1 [3, 4]; BSIM2 [5] are the
old BSIM (Berkeley Short-channel IGFET Model) models. MOS2, MOS3, and BSIM include
second-order effects such as channel-length modulation, subthreshold conduction, scattering-
limited velocity saturation, small-size effects, and charge controlled capacitances. The recent
MOS models for submicron devices are the BSIM3 (Berkeley BSIM3 web page) and BSIM4
(Berkeley BSIM4 web page) models. Silicon-on-insulator MOS transistors are described by
the SOI models from the BSIMSOI family (Berkeley BSIMSOI web page) and the STAG [18]
model. There is some support for a couple of HFET models and one model for MESA devices.
Verilog-A models are made available via the OpenVAF/OSDI interface (see chapter 9).

1.1.4 Digital Simulation

Digital circuit simulation differs from analog circuit simulation in several respects. A primary
difference is that a solution of Kirchhoff’s laws is not required. Instead, the simulator must only
determine whether a change in the logic state of a node has occurred and propagate this change
to connected elements. Such a change is called an ‘event’.

When an event occurs, the simulator examines only those circuit elements that are affected by
the event. As a result, matrix analysis is not required in digital simulators. By comparison,
analog simulators must iteratively solve for the behavior of the entire circuit because of the
forward and reverse transmission properties of analog components. This difference results in
a considerable computational advantage for digital circuit simulators, which is reflected in the
significantly greater speed of digital simulations.

1.1.5 Mixed-Signal Simulation

Modern circuits often contain a mix of analog and digital circuits. To simulate such circuits
efficiently and accurately, a mix of analog and digital simulation techniques is required. When
analog simulation algorithms are combined with digital simulation algorithms, the result is
termed ‘mixed-mode simulation’.

Two basic methods of implementing mixed-mode simulation used in practice are the ‘native
mode’ and ‘glued mode’ approaches. Native mode simulators implement both an analog algo-
rithm and a digital algorithm in the same executable. Glued mode simulators actually use two

http://bsim.berkeley.edu/models/bsim3/
http://bsim.berkeley.edu/models/bsim4/
http://bsim.berkeley.edu/models/bsimsoi/

38 CHAPTER 1. INTRODUCTION

simulators, one of which is analog and the other digital. This type of simulator must define an
input/output protocol so that the two executables can communicate with each other effectively.
The communication constraints tend to reduce the speed, and sometimes the accuracy, of the
complete simulator. On the other hand, the use of a glued mode simulator allows the component
models developed for the separate executables to be used without modification.

Ngspice is a native mode simulator providing both analog and event-based simulation in the
same executable. The underlying algorithms of ngspice (coming from XSPICE and its Code
Model Subsystem) allow use of all the standard SPICE models, provide a pre-defined collection
of the most common analog and digital functions, and provide an extensible base on which to
build additional models.

1.1.5.1 User-Defined Nodes

Ngspice supports creation of ‘User-Defined Node’ types. User-Defined Node types allow you
to specify nodes that propagate data other than voltages, currents, and digital states. Like digital
nodes, User-Defined Nodes use event-driven simulation, but the state value may be an arbitrary
data type. A simple example application of User-Defined Nodes is the simulation of a digital
signal processing filter algorithm. In this application, each node could assume a real or integer
value. More complex applications may define types that involve complex data such as digital
data vectors or even non-electronic data.

Ngspice digital simulation is actually implemented as a special case of this User-Defined Node
capability where the digital state is defined by a data structure that holds a Boolean logic state
and a strength value.

1.1.6 Mixed-Level Simulation (Electronic and TCAD)

Ngspice implements mixed-level simulation through the merging of its code with CIDER (de-
tails see Chapt. 26).

CIDER is a mixed-level circuit and device simulator that provides a direct link between tech-
nology parameters and circuit performance. A mixed-level circuit and device simulator can
provide greater simulation accuracy than a stand-alone circuit or device simulator by numer-
ically modeling the critical devices in a circuit. Compact models can be used for noncritical
devices.

CIDER couples ngspice to a internal C-based device simulator, thus providing circuit analyses,
compact models for semiconductor devices, and an interactive user interface. CIDER provides
accurate, one- and two-dimensional numerical device models based on the solution of Poisson’s
equation, and the electron and hole current-continuity equations. CIDER incorporates many of
the same basic physical models found in the the Stanford two-dimensional device simulator
PISCES [PINTS85]. Input to CIDER consists of a SPICE-like description of the circuit and
its compact models, and PISCES-like descriptions of the structures of numerically modeled
devices. As a result, CIDER should seem familiar to designers already accustomed to these two
tools.

The CIDER input format has great flexibility and allows increased access to physical model pa-
rameters. New physical models have been added to allow simulation of state-of-the-art devices.
These include transverse field mobility degradation [GATE90] that is important in scaled-down

1.2. SUPPORTED ANALYSES 39

MOSFETs and a polysilicon model for poly-emitter bipolar transistors. Temperature depen-
dence has been included for most physical models over the range from -50°C to 150°C. The
numerical models can be used to simulate all the basic types of semiconductor devices: resis-
tors, MOS capacitors, diodes, BJTs, JFETs and MOSFETs. BJTs and JFETs can be modeled
with or without a substrate contact. Support has been added for the management of device
internal states. Post-processing of device states can be performed using the control language
user interface of ngspice. Previously computed states can be loaded into the program to provide
accurate initial guesses for subsequent analyses.

Details of the basic semiconductor equations and the physical models used by CIDER are not
provided in this manual. Unfortunately, no other single source exists that describes all of the
relevant background material. Comprehensive reviews of device simulation can be found in
[PINT90] and the book [SELB84]. CODECS (predecessor to CIDER) and its inversion-layer
mobility model are described in [MAYAS88] and [LGATE90], respectively. PISCES and its
models are described in [PINT85]. Temperature dependencies for the PISCES models used by
CIDER are available in [SOLL90].

For Linux users the cooperation of the TCAD software GSS with ngspice might be of interest,
see https://ngspice.sourceforge.io/gss.html. This project is no longer maintained however, but
has moved into the Genius simulator, still available as open source cogenda genius.

1.2 Supported Analyses

The ngspice simulator supports the following different types of analysis:

1. DC Analysis (Operating Point and DC Sweep) (11.3.2 and 11.3.5)
2. AC Small-Signal Analysis (11.3.1)

3. Transient Analysis (11.3.10)

4. Pole-Zero Analysis (11.3.6)

5. Small-Signal Distortion Analysis (11.3.3)

6. Sensitivity Analysis (11.3.7)

7. Noise Analysis (11.3.4)

The different types of analysis are described below, the cross-references above are to the netlist
directives used to request them. Applications that are exclusively analog can make use of all
analysis modes with the exception of the Code Model subsystem that does not implement Pole-
Zero, Distortion, Sensitivity and Noise analyses. Event-driven applications that include digital
and User-Defined Node types may make use of DC (operating point and DC sweep) and Tran-
sient only.

In order to understand the relationship between the different analyses and the two underlying
simulation algorithms of ngspice, it is important to understand what is meant by each analysis
type. This is detailed below.

https://ngspice.sourceforge.io/gss.html
http://www.cogenda.com/article/download

40 CHAPTER 1. INTRODUCTION

1.2.1 DC Analysis

The DC analysis portion of ngspice determines the dc operating point of the circuit with induc-
tors shorted and capacitors opened. DC analysis options are specified on the .DC, . TF, and .0OP
control lines.

DC analysis does not consider any time dependence on any of the sources within the system
description. The simulator algorithm subdivides the circuit into those portions that require the
analog simulator algorithm and those that require the event-driven algorithm. Each subsystem
block is then iterated to solution, with the interfaces between analog nodes and event-driven
nodes iterated for consistency across the entire system.

Once stable values are obtained for all nodes in the system, the analysis halts and the results
may be displayed or printed out as you request them.

A dc analysis is automatically performed prior to a transient analysis to determine the tran-
sient initial conditions, and prior to an ac small-signal analysis to determine the linearized,
small-signal models for nonlinear devices. If requested, the DC small-signal value of a transfer
function (ratio of output variable to input source), input resistance, and output resistance is also
computed as a part of the DC solution. DC analysis can also be used to generate DC transfer
curves: a specified independent voltage, current source, resistor or temperature is stepped over
a user-specified range and the DC output variables are stored for each sequential source value.

1.2.2 AC Small-Signal Analysis

AC analysis is limited to analog nodes and represents the small signal, sinusoidal solution of the
analog system described at a particular frequency or set of frequencies. This analysis is similar
to the DC analysis in that it represents the steady-state behavior of the described system with a
single input node at a given set of stimulus frequencies.

The program first computes the dc operating point of the circuit and determines linearized,
small-signal models for all of the nonlinear devices in the circuit. The resultant linear circuit
is then analyzed over a user-specified range of frequencies. The desired output of an ac small-
signal analysis is usually a transfer function (voltage gain, transimpedance, etc). If the circuit
has only one ac input, it is convenient to set that input to unity and zero phase, so that output
variables have the same value as the transfer function of the output variable with respect to the
1nput.

1.2.3 Transient Analysis

Transient analysis is an extension of DC analysis to the time domain. A transient analysis first
obtains a DC solution to provide a point of departure for simulating time-varying behavior.
Once the DC solution is obtained, the time-dependent aspects of the system are reintroduced,
and the two simulator algorithms incrementally solve for the time varying behavior of the entire
system. Inconsistencies in node values are resolved by the two simulation algorithms such that
the time-dependent waveforms created by the analysis are consistent across the entire simu-
lated time interval. Resulting time-varying descriptions of node behavior for the specified time
interval are accessible to you.

All sources that are not time dependent (for example, power supplies) are set to their dc value.
The transient time interval is specified on a . TRAN control line.

1.2. SUPPORTED ANALYSES 41

1.2.4 Pole-Zero Analysis

Pole-zero analysis in ngspice computes the poles and/or zeros in the small-signal ac transfer
function. Ngspice first computes the dc operating point and then determines the linearized,
small-signal models for all the nonlinear devices in the circuit. The small-signal circuit model
is then used to find the poles and zeros of the transfer function. Two types of transfer functions
are allowed: one of the form (output voltage)/(input voltage) and the other of the form (output
voltage)/(input current). These two types of transfer functions cover all the cases and one can
find the poles/zeros of functions like input/output impedance and voltage gain. The input and
output ports are specified as two pairs of nodes. The pole-zero analysis works with resistors,
capacitors, inductors, linear-controlled sources, independent sources, BJITs, MOSFETs, JFETSs
and diodes. Transmission lines are not supported.

The method used in the analysis is a sub-optimal numerical search. For large circuits it may
take a considerable time or fail to find all poles and zeros. Please note, that for some circuits,
the method becomes “lost” and may find an excessive number of poles or zeros.

1.2.5 Small-Signal Distortion Analysis

Distortion analysis in ngspice computes steady-state harmonic and intermodulation products
for small input signal magnitudes. If signals of a single frequency are specified as the input to
the circuit, the complex values of the second and third harmonics are determined at every point
in the circuit. If there are signals of two frequencies input to the circuit, the analysis finds out
the complex values of the circuit variables at the sum and difference of the input frequencies,
and at the difference of the smaller frequency from the second harmonic of the larger frequency.
Distortion analysis is supported for the following nonlinear devices:

Diodes (DIO),

* BJT,

JFET (level 1),

MOSEFETs (levels 1, 2, 3, 9, and BSIM1),

MESEFET (level 1).

All linear devices are automatically supported by distortion analysis. If there are switches
present in the circuit, the analysis continues to be accurate provided the switches do not change
state under the small excitations used for distortion calculations.

If a device model does not support direct small signal distortion analysis, please use the Fourier
of FFT statements and evaluate the output per scripting.

1.2.6 Sensitivity Analysis

Ngspice can calculate either the DC operating-point sensitivity or the AC small-signal sen-
sitivity of an output variable with respect to all circuit variables, including model parameters.
Ngspice calculates the difference in an output variable (either a node voltage or a branch current)

42 CHAPTER 1. INTRODUCTION

by perturbing each parameter of each device independently. Since the method is a numerical
approximation, the results may demonstrate second order effects in highly sensitive parameters,
or may fail to show very low but non-zero sensitivity.

Since each variable is perturbed by a small fraction of its value, zero-valued parameters are not
analyzed, reducing what is usually a very large amount of data.

1.2.7 Noise Analysis

Noise analysis in ngspice measures the device-generated noise for a given circuit. When pro-
vided with an input source and an output port, the analysis calculates the noise contributions of
each device, and each noise generator within each device, as measured as a voltage at the output
port. Noise analysis also calculates the equivalent input noise of the circuit, based on the output
noise. This is done for every frequency point in a specified range - the calculated value of the
noise corresponds to the spectral density of the circuit variable viewed as a stationary Gaus-
sian stochastic process. After calculating the spectral densities, noise analysis integrates these
values over the specified frequency range to arrive at the total noise voltage and current over
this frequency range. The calculated values correspond to the variance of the circuit variables
viewed as stationary Gaussian processes.

1.2.8 Periodic Steady State Analysis

Experimental code.

PSS is a radio frequency periodical large-signal dedicated analysis. The implementation is
based on a time domain shooting method that make use of transient analysis. As it is in early
development stage, PSS performs analysis only on autonomous circuits, meaning that it is able
to predict fundamental frequency and (harmonic) amplitude(s) for oscillators, VCOs, etc.. The
algorithm is based on a search of the minimum error vector defined as the difference of RHS
vectors between two occurrences of an estimated period. Convergence is reached when the
mean of this error vector decreases below a given threshold parameter. Results of PSS are the
basis of periodical large-signal analyses like PAC or PNoise.

1.3 Analysis at Different Temperatures

1.3.1 Introduction

Temperature, in ngspice, is a property associated to the entire circuit, rather than an analysis op-
tion. Circuit temperature has a default (nominal) value of 27°C (300.15 K) that can be changed
using the TEMP option in an .option control line (see 11.1.1) or by the . TEMP line (see 2.14),
which has precedence over the .option TEMP line. All analyses are, thus, performed at circuit
temperature, and if you want to simulate circuit behavior at different temperatures you should
prepare a netlist for each temperature.

All input data for ngspice is assumed to have been measured at the circuit nominal tempera-
ture. This value can further be overridden for any device that models temperature effects by
specifying the TNOM parameter on the .model itself. Individual instances may further override

1.3. ANALYSIS AT DIFFERENT TEMPERATURES 43

the circuit temperature through the specification of TEMP and DTEMP parameters on the instance.
The two options are not independent even if you can specify both on the instance line, the TEMP
option overrides DTEMP. The algorithm to compute instance temperature is described below:

Algorithm 1.1 Instance temperature computation

IF TEMP is specified THEN

instance_temperature = TEMP

ELSE

instance_temperature = circuit_temperature + DTEMP
END IF

Temperature dependent support is provided for all devices except voltage and current sources
(either independent and controlled) and BSIM models. BSIM MOSFETSs have an alternate
temperature dependency scheme that adjusts all of the model parameters before input to ngspice.

For details of the BSIM temperature adjustment, see [6] and [7]. Temperature appears explicitly
in the exponential terms of the BJT and diode model equations. In addition, saturation currents
have a built-in temperature dependence. The temperature dependence of the saturation current
in the BJT models is determined by:

XTI
1o(r) = 15(1) (1) exp (BT (1.1)

where k is Boltzmann’s constant, g is the electronic charge, E, is the energy gap model pa-
rameter, and X7/ is the saturation current temperature exponent (also a model parameter, and
usually equal to 3).

The temperature dependence of forward and reverse beta is according to the formula:

XTB
Ban:Baw(%) (12)

where Ty and 77 are in degrees Kelvin, and X7 B is a user-supplied model parameter. Tempera-
ture effects on beta are carried out by appropriate adjustment to the values of Br, Isg, Br, and
Isc (SPICE model parameters BF, ISE, BR, and ISC, respectively).

Temperature dependence of the saturation current in the junction diode model is determined by:

_ T\ (Ea(Ti—T)
Is(Tv) = Is (To) (70) exp (W) (1.3)

where N is the emission coefficient model parameter, and the other symbols have the same
meaning as above. Note that for Schottky barrier diodes, the value of the saturation current
temperature exponent, X 71, is usually 2. Temperature appears explicitly in the value of junction
potential, U (in Ngspice PHI), for all the device models.

The temperature dependence is determined by:

U(T) = L (Nala) (1.4)

44 CHAPTER 1. INTRODUCTION

where k is Boltzmann’s constant, ¢ is the electronic charge, N, is the acceptor impurity den-
sity, Ny is the donor impurity density, NV; is the intrinsic carrier concentration, and Ej is the
energy gap. Temperature appears explicitly in the value of surface mobility, My(or Up), for the
MOSFET model.

The temperature dependence is determined by:

0 (T) 15 (1.5)
(%)
Ty
The effects of temperature on resistors, capacitor and inductors is modeled by the formula:
R(T) = R(Ty) [1+Tc1 (T—To)-I-TCZ(T—To)Z] (1.6)

where 7 is the circuit temperature, T is the nominal temperature, and 7C; and T'C; are the first
and second order temperature coefficients.

1.3.2 Controlling the temperature

The default temperature is set to 27 °C.
.temp 40
will set the overall temperature to 40 °C (2.14). The command
.options temp=60
will set the overall temperature to 60 °C (11.1.1). Both commands are equivalent, however
. temp will override .options temp.
The temperature of an individual device may be determined by the instance parameters temp or
dtemp.
M1 d g s b MOSN temp=35
will set the temperature of the specific MOS device to 35 °C.
M2 d g s b MOSN dtemp=20
will set the temperature of device M2 at a delta of 20° above the overall temperature.
The temperatures thus set are static throughout the simulation. It is possible, however, to sweep

the temperature by a command like

.dc temp 25 49 2

1.4. CONVERGENCE 45

starting at 25 °C, stopping at 49 °C with a step of 2° (see 11.3.2).

The current overall temperature may be assessed by the variable TEMPER, which can be used as
part of an equation in B sources (5.1.2) or behavioral E, G, R, L, C sources (e.g. 5.2). A typical
example may look like

Btl 1 2 V='5 + TEMPER*TEMPER’

The nominal temperature, a reference temperature where device model parameters have been
measured, is called tnom.

.options tnom=25

will set the nominal temperature for all devices to 25 °C (11.1.1). Tnom sometimes may be set
as a model parameter in a .model line (3.2.2), depending on the specific class of devices and
its model parameter set.

1.4 Convergence

Ngspice uses the Newton-Raphson algorithm to solve nonlinear equations arising from circuit
description. The NR algorithm is interactive and terminates when both of the following condi-
tions hold:

1. The nonlinear branch currents converge to within a tolerance of 0.1% or 1 picoamp (1.0e-
12 Amp), whichever is larger.

2. The node voltages converge to within a tolerance of 0.1% or 1 microvolt (1.0e-6 Volt),
whichever is larger.

1.4.1 Voltage convergence criterion

The algorithm has reached convergence when the difference between the last iteration k and the
current one (k+ 1)

el 0 < RELTOL Y, -+ VNTOL, (1.7)
where
Vi = max (v£,k+1)’). (1.8)

The RELTOL (RELative TOLerance) parameter, which default value is 1073, specifies how small
the solution update must be, relative to the node voltage, to consider the solution to have con-
verged. The VNTOL (absolute convergence) parameter, which has 1V as default value, becomes
important when node voltages have near zero values. The relative parameter alone, in such case,
would need too strict tolerances, perhaps lower than computer round-off error, and thus conver-
gence would never be achieved. VNTOL forces the algorithm to consider as converged any node
whose solution update is lower than its value.

46 CHAPTER 1. INTRODUCTION

1.4.2 Current convergence criterion

Ngspice checks the convergence on the non-linear functions that describe the non-linear branches
in circuit elements. In semiconductor devices the functions defines currents through the device
and thus the name of the criterion.

Ngspice computes the difference between the value of the nonlinear function computed for the
last voltage and the linear approximation of the same current computed with the actual voltage

D) () :
branch — Ybranch < RELTOL Wrae T ABSTOL, (1.9)
where
. - (k+1) (k)
Lbrypq, = MAX (lbranch7 lbranch) : (1.10)

In the two expressions above, the iy, indicates the linear approximation of the current.

1.4.3 Convergence failure

Although the algorithm used in ngspice has been found to be very reliable, in some cases it fails
to converge to a solution. When this failure occurs, the program terminates the job. Failure
to converge in dc analysis is usually due to an error in specifying circuit connections, element
values, or model parameter values. Regenerative switching circuits or circuits with positive
feedback probably will not converge in the dc analysis unless the OFF option is used for some of
the devices in the feedback path, .nodeset control line is used to force the circuit to converge
to the desired state.

Chapter 2

Circuit Description

2.1 General Structure and Conventions

2.1.1 Input file structure

The circuit to be analyzed is described to ngspice by a set of element instance lines, which
define the circuit topology and element instance values, and a set of control lines, which define
the model parameters and the run controls. All lines are assembled in an input file to be read by
ngspice. Two lines are essential:

* The first line in the input file must be the title, which is the only comment line that does
not need any special character in the first place.

* The last line must be . end, plus a newline delimiter.

The order of the remaining lines is alomost arbitrary (except, of course, that continuation lines
must immediately follow the line being continued, .subcktends, .ifendif, or
.controlendc have to enclose their specific lines). Leading white spaces in a line are
ignored, as well as empty lines.

The lines described in sections 2.1 to 2.12 are typically used in the core of the input file, outside
of a .control section (see 12.4.3). An exception is the .include includefile line (2.8)
that may be placed anywhere in the input file. The contents of includefile will be inserted
exactly in place of the .include line.

2.1.2 Syntax check

A very preliminary syntax check has been added to the input parser.

2.1.2.1 Valid utf-8 characters

The input file will be scanned for valid utf-8 characters. If non-valid characters are found,
reading the input is stopped.

47

48 CHAPTER 2. CIRCUIT DESCRIPTION

2.1.2.2 Special characters leading a line
If the first character in a netlist or .control line is one of =[]?()&%$§\"!:, then ngspice replaces

it by **” and issues a warning. Command set strict_errorhandling will force ngspice to
exit.

2.1.2.3 Dot command couple completion

Check for .controlendc, .subcktends,.ifendif.

2.1.3 Some naming conventions

2.1.3.1 Lines

Fields on a line are separated by one or more blanks, a comma, an equal (=) sign, or a left or
right parenthesis; extra spaces are ignored. A line may be continued by entering a ‘+” (plus) in
column 1 of the following line; ngspice continues reading beginning with column 2. Lines may
also be continued in Unix shell style, when the final two characters are backslashes. A device
name field must begin with a letter (A through Z) and cannot contain any delimiters.

2.1.3.2 Numbers

A number field may be an integer field (12, -44), a floating point field (3.14159), either an
integer or floating point number followed by an integer exponent (le-14, 2.65¢e3), or either an
integer or a floating point number followed by one of the following scale factors:

’ Suffix \ Name \ Factor ‘
T Tera 10'2
G Giga 10°
Meg | Mega 109
K Kilo 10°
mil | Mil |25.4x107°
m | milli 1073
u micro 10~°
n nano 107°
p pico 10~ 12
f | femto 10°15
a atto 1018

Table 2.1: Ngspice scale factors

2.1.3.3 Letters following a number

Letters immediately following a number that are not scale factors are ignored, and letters im-
mediately following a scale factor are ignored. Hence, 10, 10V, 10Volts, and 10Hz all represent
the same number, and M, MA, MSec, and MMhos all represent the same scale factor. Note

2.2. DOT COMMANDS 49

that 1000, 1000.0, 1000Hz, 1e3, 1.0e3, 1kHz, and 1k all represent the same number. Note that
‘M’ or ‘m’ denote ‘milli’, i.e. 1073. Suffix meg has to be used for 10°. If compatibility mode
LT (12.14.6) is set, ngspice will accept the RKM notation for entering resistance or capacitance
values, e.g. 2K7 or 100R.

2.1.3.4 Node names

Node names may be arbitrary character strings (exceptions see below) and are case insensitive,
if ngspice is used in batch mode (12.4.1). If in interactive (12.4.2) or control (12.4.3) mode,
node names may either be plain numbers or arbitrary character strings, not starting with a
number. The following characters = % (), [] < > ~ are not allowed in a node name, especially
when XSPICE code models are used (they have their special meanings then and act as string
delimiters).

2.1.3.5 Ground node

The ground node must be named ‘0’ (zero). For compatibility reason gnd is accepted as ground
node, and will internally be treated as a global node and be converted to ‘0. If this is not
feasible, you may switch the conversion off by setting set no_auto_gnd in one of the con-
figuration files spinit or .spiceinit. Each circuit has to have a ground node (gnd or 0)! Note
the difference in ngspice where the nodes are treated as character strings and not evaluated as
numbers, thus ‘0’ and 00 are distinct nodes in ngspice but not in SPICE2.

2.1.4 'Topological constraints

Ngspice requires that the following topological constraints are satisfied:

* The circuit cannot contain a loop of voltage sources and/or inductors and cannot contain
a cut-set of current sources and/or capacitors.

* Each node in the circuit must have a dc path to ground.

* Every node must have at least two connections except for transmission line nodes (to
permit unterminated transmission lines) and MOSFET substrate nodes (which have two
internal connections anyway).

2.2 Dot commands

This section summarizes all dot commands available in ngspice, with links to their detailed
presentation, in alphabetical order. Control section (or interactive) commands are listed and
explained in chapter 13.5.

.AC start an ac simulation (11.3.1).

.CONTROL start a .control section (12.4.3).

50 CHAPTER 2. CIRCUIT DESCRIPTION

.CSPARAM define parameter(s) made available in a control section (2.13).
.DC start a dc simulation (11.3.2).

.DISTO start a distortion analysis simulation (11.3.3).

.ELSE conditional branching in the netlist (2.15).

.ELSEIF conditional branching in the netlist (2.15).

.END end of the netlist (2.4.2).

.ENDC end of the .control section (12.4.3).

.ENDIF conditional branching in the netlist (2.15).

.ENDS end of subcircuit definition (2.6.2).

.FOUR Fourier analysis of transient simulation output (11.6.4).

.FUNC define a function (2.12).

.GLOBAL define global nodes (2.7).

.IC setinitial conditions (11.2.2).

.IF conditional branching in the netlist (2.15).

. INCLUDE include part of the netlist (2.8).

.INCPSLT include part of the netlist with compatibility mode "pslt’ (2.9, 12.14.4.2).
.LIB include a library (2.10).

.MEAS measurements during the simulation (11.4).

.MODEL list of device model parameters (2.5).

.NODESET set initial conditions (11.2.1).

.NOISE start a noise simulation (11.3.4).

.OP start an operating point simulation (11.3.5).

.OPTIONS set simulator options (11.1).

.PARAM define parameter(s) (2.11).

.PLOT printer plot during batch simulation (11.6.3).

.PRINT tabular listing during batch simulation (11.6.2).

.PROBE save device currents, voltages and differential voltages (11.6.5).
.PSS start a periodic steady state analysis (11.3.12).

.PZ start a pole-zero analysis simulation (11.3.6).

2.3. CIRCUIT ELEMENTS (DEVICE INSTANCES) 51

.SAVE name simulation result vectors to be saved (11.6.1).
.SENS start a sensitivity analysis (11.3.7).

.SP S parameter analysis (11.3.8).

.SUBCKT start of subcircuit definitions (2.6).

.TEMP set the ciruit temperature (2.14).

.TF start a transfer function analysis (11.3.9).

.TITLE title of the netlist (2.4.1).

.TRAN start a transient simulation (11.3.10).

.WIDTH width of printer plot (11.6.7).

2.3 Circuit elements (device instances)

Each element in the circuit is a device instance specified by an instance line that contains:

¢ the element instance name,
¢ the circuit nodes to which the element is connected,

* and the values of the parameters that determine the electrical characteristics of the ele-
ment.

The first letter of the element instance name specifies the element type. The format for the
ngspice element types is given in the following manual chapters, e.g. BZZZZ. The tokens
XXXXXXX, YYYYYYY, and ZZZZ7ZZ77 denote arbitrary alphanumeric strings.

For example, a resistor instance name must begin with the letter R and can contain one or more
characters. Hence, R, R1, RSE, ROUT, and R3AC2ZY are valid resistor names. Details of each
type of device are supplied in a following section 3. Table 2.2 lists the element types available
in ngspice, sorted by their first letter.

52 CHAPTER 2. CIRCUIT DESCRIPTION

] First letter Element description \ Comments, links
8
analog (8.2)
A XSPICE code model digita% (8.4)
mixed signal (8.3)
B Behavioral (arbitrary) source 5.1
C Capacitor 3.3.6
D 7
E Voltage-controlled voltage source (VCVS) nlcl)ﬁ?ﬁ;éjrz(g.)i)
F Current-controlled current source (CCCs) linear (4.2.3)
G Voltage-controlled current source (VCCS) ngﬁ?ﬁ;éjf(' 51)3)
H Current-controlled voltage source (CCVS) linear (4.2.4)
I Current source 4.1
J Junction field effect transistor (JFET) 7.4
K Coupled (Mutual) Inductors 3.3.12
L Inductor 3.3.10
7.6
M Metal oxide field effect transistor (MOSFET) BSIM3 (7.6.3.3)
BSIM4 (7.6.3.4)
N Verilog-A Compact Device Models 9
O Lossy transmission line 6.2
P Coupled multiconductor line (CPL) 6.4.2
Q Bipolar junction transistor (BJT) 7.3
R Resistor 3.3.1
S Switch (voltage-controlled) 3.3.15
T Lossless transmission line 6.1
U Uniformly distributed RC line 6.3*
U Basic digital building blocks using XSPICE 10%*
v Voltage source 4.1
\%% Switch (current-controlled) 3.3.15
X Subcircuit 2.6.3
Y Single lossy transmission line (TXL) 6.4.1
Z Metal semiconductor field effect transistor (MESFET) 7.5

Table 2.2: ngspice element types

*) For a disambiguation see chapter 10.1.3.

2.4. BASIC LINES 53

2.4 Basic lines

24.1 .TITLE line

Examples:

POWER AMPLIFIER CIRCUIT

* additional lines following

Test of CAM cell
* additional lines following

The title line must be the first in the input file. Its contents are printed verbatim as the heading
for each section of output.

As an alternative, you may place a .TITLE <any title> line anywhere in your input deck.
The first line of your input deck will be overridden by the contents of this line following the
.TITLE statement.

.TITLE line example:

3k >k >k >k >k >k >k >k >k >k >k 5k >k 5k 5k 5k 5k 5k 5k 5k 5k 5k 3k 5k kK ok k k k

* additional lines following
*

.TITLE Test of CAM cell
* additional lines following

will internally be replaced by

Internal input deck:

Test of CAM cell
* additional lines following
*

*TITLE Test of CAM cell
* additional lines following

2.4.2 .END Line

Examples:

.end

The .end line must always be the last in the input file. Note that the period is an integral part
of the name.

54 CHAPTER 2. CIRCUIT DESCRIPTION

2.4.3 Comments

General Form:
* <any comment>
Examples:

* RF=1K Gain should be 100
* Check open-loop gain and phase margin

The asterisk in the first column indicates that this line is a comment line. Comment lines may
be placed anywhere in the circuit description.

2.4.4 End-of-line comments

General Form:

<any command> $ <any comment>
<any command> ; <any comment>

Examples:

RF2=1K $ Gain should be 100
C1=10p ; Check open-loop gain and phase margin
.param nl=1 //new value

ngspice supports comments that begin with double characters ‘$ ’* (dollar plus space) or ‘//’.
For readability you should precede each comment character with a space. ngspice will accept
the single character ‘$’.

Please note that the ‘$’ character is not a valid end-of-line comment delimiter, if the PSPICE
compatibility mode (12.14.5) has been chosen. Then *$’ becomes an ordinary character.

2.4.5 Continuation lines

General Form:

<any command>
+ <continuation of any command> ; some comment
+ <further continuation of any command>

If input lines get overly long, they may be split into two or more lines (e.g. for better readability).
Internally they will be merged into a single line. Each follow-up line starts with character
"+’ plus additional space. Follow-up lines have to follow immediately after each other. End-
of-line comments will be ignored. Lines may also be continued by ending the line with two
backslashes, as used in Unix shells. The following lines do not allow using continuation lines:
.title, .lib, and .include.

2.5. .MODEL DEVICE MODELS 55

2.5 .MODEL Device Models

General form:
.model mname type(pnamel=pvall pname2=pval2 ...)
Examples:

.model MOD1 npn (bf=50 is=1le-13 vbf=50)

Most simple circuit elements typically require only a few parameter values. However, some de-
vices (semiconductor devices in particular) that are included in ngspice require many parameter
values. Often, many devices in a circuit are defined by the same set of device model parameters.
For these reasons, a set of device model parameters is defined on a separate .model line and
assigned a unique model name. The device element lines in ngspice then refer to the model
name.

For these more complex device types, each device element line contains the device name, the
nodes the device is connected to, and the device model name. In addition, other optional pa-
rameters may be specified for some devices: geometric factors and an initial condition (see the
following section on Transistors (7.3 to 7.6) and Diodes (7) for more details). mname in the
above is the model name, and type is one of the following fifteen types:

’ Code \ Model Type ‘
R Semiconductor resistor model
C Semiconductor capacitor model
L Inductor model
SW Voltage controlled switch
CSw Current controlled switch

URC Uniform distributed RC model
LTRA Lossy transmission line model

D Diode model
NPN NPN BJT model
PNP PNP BJT model
NIJF N-channel JFET model
PJF P-channel JFET model

NMOS N-channel MOSFET model
PMOS P-channel MOSFET model
NMF N-channel MESFET model
PMF P-channel MESFET model
VDMOS Power MOS model

Table 2.3: Ngspice model types

Parameter values are defined by appending the parameter name followed by an equal sign and
the parameter value. Model parameters that are not given a value are assigned the default values
given below for each model type. Models are listed in the section on each device along with

the description of device element lines. Model parameters and their default values are given in
Chapt. 27.

56 CHAPTER 2. CIRCUIT DESCRIPTION

2.6 .SUBCKT Subcircuits

Subcircuits consisting of ngspice elements can be defined and used similarly to device models.
Subcircuits are the way ngspice implements hierarchical modeling and make circuits with re-
peated sections easier to represent. During parsing of a SPICE deck, each subcircuit instance
is replaced by its definition using text expansion and the hierarchy is not present after input
processing.

The subcircuit is defined in the input deck by a grouping of element cards delimited by the
.subckt and the .ends cards (or the keywords defined by the substart and subend options
(see 13.7)); the program then automatically inserts the defined group of elements wherever the
subcircuit is referenced. Instances of subcircuits within a larger circuit are defined through the
use of an instance card that begins with the letter ‘X’. A complete example of all three of these
cards follows:

Example:

* The following is the instance card:
*

xdivl 10 7 0 vdivide

* The following are the subcircuit definition cards:
*

.subckt vdivide 1 2 3
rl 1 2 10K

r2 2 3 5K

.ends

The above specifies a subcircuit with ports numbered ‘1°, ‘2’ and ‘3’:
* Resistor ‘R1° is connected from port ‘1’ to port 2°, and has value 10 kOhms.
* Resistor ‘R2’ is connected from port ‘2’ to port ‘3’, and has value 5 kOhms.

The instance card, when placed in an ngspice deck, will cause subcircuit port ‘1’ to be equated
to circuit node ‘10’, while port 2’ will be equated to node ‘7’ and port ‘3’ will equated to node
‘0.

There is no limit on the size or complexity of subcircuits, and subcircuits may contain other
subcircuits. An example of subcircuit usage is given in Chapt. 17.6.

2.6.1 .SUBCKT Line

General form:
.SUBCKT subnam N1 <N2 N3 ...>
Examples:

.SUBCKT OPAMP 1 2 3 4

2.6. .SUBCKT SUBCIRCUITS 57

A circuit definition is begun with a . SUBCKT line. subnam is the subcircuit name, and N1, N2,

.. are the external nodes, which cannot be zero. The group of element lines that immediately
follow the .SUBCKT line define the subcircuit. The last line in a subcircuit definition is the
.ENDS line (see below). Control lines may not appear within a subcircuit definition; however,
subcircuit definitions may contain anything else, including other subcircuit definitions, device
models, and subcircuit calls (see below). Note that any device models or subcircuit definitions
included as part of a subcircuit definition are strictly local (i.e., such models and definitions
are not known outside the subcircuit definition). Also, any element nodes not included on the
. SUBCKT line are strictly local, with the exception of 0 (ground) that is always global. If you
use parameters, the . SUBCKT line will be extended (see 2.11.3).

2.6.2 .ENDS Line

General form:

.ENDS <SUBNAM>
Examples:

.ENDS OPAMP

The .ENDS line must be the last one for any subcircuit definition. The subcircuit name, if
included, indicates which subcircuit definition is being terminated; if omitted, all subcircuits
being defined are terminated. The name is needed only when nested subcircuit definitions are
being made.

2.6.3 Subcircuit Calls

General form:

XYYYYYYY N1 <N2 N3 ...> SUBNAM
Examples:

X1 2 417 3 1 MULTI

Subcircuits are used in ngspice by specifying pseudo-elements beginning with the letter X,
followed by the circuit nodes to be used in expanding the subcircuit. If you use parameters, the
subcircuit call will be modified (see 2.11.3).

58 CHAPTER 2. CIRCUIT DESCRIPTION

2.7 .GLOBAL

General form:
.GLOBAL nodenamel [nodename2 ...]
Examples:

.GLOBAL gnd vcc

Nodes defined in the .GLOBAL statement are available to all circuit and subcircuit blocks inde-
pendently from any circuit hierarchy. After parsing the circuit, these nodes are accessible from
top level.

2.8 .INCLUDE

General form:
.INCLUDE filename
Examples:

.INCLUDE /users/spice/common/bsim3-param.mod

Frequently, portions of circuit descriptions will be reused in several input files, particularly with
common models and subcircuits. In any ngspice input file, the . INCLUDE line may be used to
copy some other file as if that second file appeared in place of the .INCLUDE line in the original
file.

If the filename is a relative path and the file is not found, it is searched for in the locations
given by variable sourcepath (13.7). There is no restriction on the file name imposed by ngspice
beyond those imposed by the local operating system.

29 .INCPSLT
General form:

.INCPSLT filename
Examples:

.INCPSLT /users/spice/models/0PA1641.1ib

2.10. .LIB 59

A special form of including a portion of a netlist: The included part is treated as if its compati-
bility mode had been set to "pslt’, even if the main netlist has a different compatibility mode.
See also chapter 12.14.4.2.

If the filename is a relative path and the file is not found, it is searched for in the locations
given by variable sourcepath (13.7). There is no restriction on the file name imposed by ngspice
beyond those imposed by the local operating system.

2.10 .LIB

General form:
.LIB filename libname
Examples:

.LIB /users/spice/common/mosfets.lib mosl

The .LIB statement allows including library descriptions into the input file. Inside the *.lib
file a library libname will be selected. The statements of each library inside the *.1ib file are
enclosed in .LIB libname <...> .ENDL statements. The file is searched for in the same way
as for .include.

If the compatibility mode (12.14) is setto 'ps’ by set ngbehavior=ps (13.7) in spinit (12.5)
or .spiceinit (12.6), then a simplified syntax .LIB filename is available: a warning is issued
and filename is simply included as described in Chapt. 2.8.

2.11 .PARAM Parametric netlists

Ngspice allows for the definition of parametric attributes in the netlists. This is an enhancement
of the ngspice front-end that adds arithmetic functionality to the circuit description language.

2.11.1 .param line

General form:
.param <ident> = <expr> <ident> = <expr> ...
Examples:

.param pippo=5

.param po=6 pp=7.8 pap={AGAUSS(pippo, 1, 1.67)}
.param pippp={pippo + pp}

.param p={pp}

.param pop='pp+p’

60 CHAPTER 2. CIRCUIT DESCRIPTION

This line assigns numerical values to identifiers. More than one assignment per line is possible
using a separating space. Parameter identifier names must begin with an alphabetic character.
The other characters must be either alphabetic, a number, or ! # $ % [1 _ as special char-
acters. The variables time, temper, and hertz (see 5.1.1) are not valid identifier names. Other
restrictions on naming conventions apply as well, see 2.11.6.

The .param lines inside subcircuits are copied per call, like any other line. All assignments
are executed sequentially through the expanded circuit. Before its first use, a parameter name
must have been assigned a value. Expressions defining a parameter should be put within braces
{p+p2}, or alternatively within single quotes 'AGAUSS (pippo, 1, 1.67)’. An assignment
cannot be self-referential, something like .param pip = ’pip+3’ will not work.

The current ngspice version does not always need quotes or braces in expressions, especially
when spaces are used sparingly. However, it is recommended to do so, as the following exam-
ples demonstrate.

.param a = 123 * 3 b = sqrt(9) $ doesn’t work, a <= 123
.param a = "123 * 3' b = sqrt(9) $ ok.

.param ¢ = a + 123 $ won't work

.param c = "a + 123’ $ ok.

.param ¢ = a+123 $ ok.

Parameters may also have string values, but support is limited. String-valued parameters can be
defined by .param and used in the same ways as numeric parameters. The only operation on
string values is concatenation and that is possible only in top-level . param assignments.

.param strl="first" str2="second"
.param both={strl}" and "str2

2.11.2 Brace expressions in circuit elements:

General form:
{ <expr> }

Examples:

These are allowed in .model lines and in device lines. A SPICE number is a floating point
number with an optional scaling suffix, immediately glued to the numeric tokens (see Chapt.
2.11.5). Brace expressions ({..}) cannot be used to parameterize node names or parts of names.
All identifiers used within an <expr> must have known values at the time when the line is
evaluated, else an error is flagged.

2.11. .PARAM PARAMETRIC NETLISTS 61

2.11.3 Subcircuit parameters

General form:
.subckt <identn> node node ... <ident>=<value> <ident>=<value> ...
Examples:

.subckt myfilter in out rval=100k cval=100nF

<identn> is the name of the subcircuit given by the user. node is an integer number or an
identifier, for one of the external nodes. The first <ident>=<value> introduces an optional
section of the line. Each <ident> is a formal parameter, and each <value> is either a SPICE
number or a brace expression. Inside the .subcktends context, each formal parameter
may be used like any identifier that was defined on a .param control line. The <value> parts
are default values of the parameters.

The syntax of a subcircuit call (invocation) is:

General form:
X<name> node node ... <identn> <ident>=<value> <ident>=<value> ...
Examples:

X1 input output myfilter rval=1lk

Here <name> is the symbolic name given to that instance of the subcircuit, <identn> is the
name of a subcircuit defined beforehand. node node ... is the list of actual nodes where the
subcircuit is connected. <value> is either a SPICE number or a brace expression { <expr> }

Subcircuit example with parameters:

* Param-example

.param amplitude= 1V

*

.subckt myfilter in out rval=100k cval=100nF
Ra in pl {2xrval}

Rb pl out {2xrval}

Cl plo {2xcval}

Ca in p2 {cval}

Cb p2 out {cval}

R1 p2 0 {rval}

.ends myfilter

*

X1 input output myfilter rval=1lk cval=ln
V1 input 0 AC {amplitude}

.end

62 CHAPTER 2. CIRCUIT DESCRIPTION

2.11.4 Symbol scope

All subcircuit and model names are considered global and must be unique. The . param symbols
that are defined outside of any .subcktends section are global. Inside such a section, the
pertaining params: symbols and any .param assignments are considered local: they mask any
global identical names, until the .ends line is encountered. You cannot reassign to a global
number inside a . subckt, a local copy is created instead. Scope nesting works up to a level of
10. For example, if the main circuit calls A that has a formal parameter xx, A calls B that has a
param. xx, and B calls C that also has a formal param. xx, there will be three versions of ‘xx’
in the symbol table but only the most local one - belonging to C - is visible.

2.11.5 Syntax of expressions

<expr> (optional parts within [...])

An expression may be one of:

<atom> where <atom> is either a spice number or an identifier
<unary-operator> <atom>

<function-name> (<expr> [, <expr> ...])
<atom> <binary-operator> <expr>
(<expr>)

As expected, atoms, built-in function calls and stuff within parentheses are evaluated before
the other operators. The operators are evaluated following a list of precedence close to the one
of the C language. For equal precedence binary ops, evaluation goes left to right. Functions
operate on real values only!

’ Operator \ Alias \ Precedence \ Description ‘

- 1 unary -

! 1 unary not
*k ~ 2 power, like pwr
* 3 multiply

/ 3 divide

% 3 modulo

\ 3 integer divide
+ 4 add

- 4 subtract
== 5 equality

I= <> 5 non-equal
<= 5 less or equal
>= 5 greater or equal
< 5 less than

> 5 greater than
&& 6 boolean and
|| 7 boolean or

crx:y 8 ternary operator

2.11. .PARAM PARAMETRIC NETLISTS 63

The evaluation of the power functions ** or * depends on the compatibility mode (12.14.1)
chosen.

Power function source code implementation:

compatmode hs: x>0 pow(x, y); x<0 pow(x, round(y)); X=0 0
compatmode lt: x>0 pow(x, y); x<0 pow(x, Vy)
if y is close to integer; else 0

The number zero is used to represent boolean False. Any other number represents boolean True.
The result of logical operators is 1 or 0. An example input file is shown below:

Example input file with logical operators:

* Logical operators

vier 10 {1 || 0}
vland 2 0 {1 && 0}
vlnot 3 0 {! 1}
vimod 4 0 {5 % 3}
vldiv 50 {5\ 3}
vOnot 6 0 {! 0O}
.control

op

print allv

.endc

.end

64 CHAPTER 2. CIRCUIT DESCRIPTION

| Built-in function \ Notes |
sqrt(x) y = sqrt(x)
sin(X), cos(x), tan(x)
sinh(x), cosh(x), tanh(x)
asin(x), acos(x), atan(x)
asinh(x), acosh(x), atanh(x)

arctan(x) atan(x), kept for compatibility
exp(x)
In(x), log(x)
abs(x)
nint(x) Nearest integer, half integers towards even
int(x) Nearest integer rounded towards 0
floor(x) Nearest integer rounded towards -oo
ceil(x) Nearest integer rounded towards +oo
pow(x,y) x raised to the power of y (pow from C runtime library)
pwr(X,y) pow(fabs(x), y)
min(X, y)
max(Xx, y)
sgn(x) 1.0 for x >0, 0.0 for x == 0, -1.0 for x < 0
ternary_fen(x, y, z) X?7 y: z
gauss(nom, rvar, sigma) nominal value plus variation drawn from Gaussian

distribution with mean 0 and standard deviation rvar
(relative to nominal), divided by sigma
agauss(nom, avar, sigma) nominal value plus variation drawn from Gaussian
distribution with mean 0 and standard deviation avar
(absolute), divided by sigma

unif(nom, rvar) nominal value plus relative variation (to nominal)
uniformly distributed between +/-rvar
aunif(nom, avar) nominal value plus absolute variation uniformly distributed
between +/-avar
limit(nom, avar) nominal value +/-avar, depending on random number in

[-1, I[being> G or< 0

The scaling suffixes (any decorative alphanumeric string may follow):

] suffix \ value ‘

g 1e9
meg le6
le3
le-3
le-6
le-9
le-12
le-15

—=o B |e B =

Note: there are intentional redundancies in expression syntax, e.g. Xy , x*x*xy and pwr(x,y)
all have nearly the same result.

2.12. .FUNC 05

2.11.6 Reserved words

In addition to the above function names and to the verbose operators (not and or div mod
), other words are reserved and cannot be used as parameter names: or, defined, sqr, sqrt,
sin, cos, exp, ln, log, logl®, arctan, abs, pwr, time, temper, hertz.

2.11.7 A word of caution on the three ngspice expression parsers

The historical parameter notation using & as the first character of a line as equivalence to
.param. is deprecated and will be removed in a coming release.

Confusion may arise in ngspice because of its multiple numerical expression features. The
.param lines and the brace expressions (see 2.11.1 and 2.11.2) are evaluated in the front-end,
that is, just after the subcircuit expansion. (Technically, the X lines are kept as comments in the
expanded circuit so that the actual parameters can be correctly substituted). Therefore, after the
netlist expansion and before the internal data setup, all number attributes in the circuit are known
constants. However, there are circuit elements in Spice that accept arithmetic expressions not
evaluated at this point, but only later during circuit analysis. These are the arbitrary current
and voltage sources (B-sources, 5), as well as E- and G-sources and R-, L-, or C-devices.
The syntactic difference is that ‘compile-time’ expressions are within braces, but ‘run-time’
expressions have no braces. To make things more complicated, the back-end ngspice scripting
language accepts arithmetic/logic expressions that operate only on its own scalar or vector data
sets (13.2). Please see Chapt. 2.16.

It would be desirable to have the same expression syntax, operator and function set, and prece-
dence rules, for the three contexts mentioned above. In the current Numparam implementation,
that goal is not achieved.

2,12 .FUNC

This keyword defines a function. The syntax of the expression is the same as for a .param
(2.11.5).

General form:

.func <ident> { <expr> }
.func <ident> = { <expr> }

Examples:

.func icos(x) {cos(x) - 1}
.func f(x,y) {xxy}
.func foo(a,b) = {a + b}

. func will initiate a replacement operation. After reading the input files, and before parameters
are evaluated, all occurrences of the icos(x) function will be replaced by cos(x)-1. All
occurrences of f(x,y) will be replaced by xxy. Function statements may be nested to a depth
of t.b.d..

66 CHAPTER 2. CIRCUIT DESCRIPTION

2.13 .CSPARAM

Create a constant vector (see 13.8.2) from a parameter in plot (13.3) const.

General form:
.csparam <ident> = <expr>
Examples:

.param pippo=5

.param pp=6

.csparam pippp={pippo + pp}
.param p={pp}

.csparam pap='pp+p’

In the example shown, vectors pippp, and pap are added to the constants that already reside
in plot const, having length one and real values. These vectors are generated during circuit
parsing and thus cannot be changed later (same as with ordinary parameters). They may be used
in ngspice scripts and .control sections (see Chapt. 13).

The use of . csparam is still experimental and has to be tested. A simple usage is shown below.

x test csparam

.param TEMPS = 27

.csparam newt = {3*TEMPS}
.csparam mytemp = '2 + TEMPS'
.control

echo $&newt $&mytemp

.endc

.end

2.14 .TEMP

Sets the circuit temperature in degrees Celsius.

General form:
.temp value
Examples:

.temp 27

This card overrides the circuit temperature given in an .option line (11.1.1).

2.15. .IF CONDITION-CONTROLLED NETLIST 67

2.15 .IF Condition-Controlled Netlist

A simple . IF-.ELSE(IF) block allows condition-controlling of the netlist. boolean expression
is any expression according to Chapt. 2.11.5 that evaluates parameters and returns a boolean 1

or 0. The netlist block in between the .ifendif statements may contain device instances or
.model cards that are selected according to the logic condition.

General form:

.if(boolean expression)
:éiseif(boolean expression)
else
endif

Example 1:

* device instance in IF-ELSE block
.param ok=0 ok2=1

vi101

R1 102

.if (ok && ok2)

R11 10 2

.else

R11 1 0 0.5 $ <-- selected

.endif
Example 2:

* .model in IF-ELSE block
.param m0=0 ml=1

M1 12 3 4 N1 W=1 L=0.5

Lif(mo==1)

.model N1 NMOS level=49 Version=3.1

.elseif(ml==1)

.model N1 NMOS level=49 Version=3.2.4 $ <-- selected
.else

.model N1 NMOS level=49 Version=3.3.0

.endif

Nesting of .IF-.ELSE(IF)-.ENDIF blocks is possible. Several .elseif (but of course only
one .else)are allowed per block (please see example ngspice/tests/regression/misc/if-elseif.cir).

68 CHAPTER 2. CIRCUIT DESCRIPTION

However some restrictions apply, as the following netlist components are not supported within
the .IF-.ENDIF block: .SUBCKT, .INC, .LIB, and .PARAM.

2.16 Parameters, functions, expressions, and command scripts

In ngspice there are several ways to describe functional dependencies. In fact there are three
independent function parsers, being active before, during, and after the simulation. So it might
be due to have a few words on their interdependence.

2.16.1 Parameters

Parameters (Chapt. 2.11.1) and functions, either defined within the .param statement or with
the .func statement (Chapt. 2.12) are evaluated before any simulation is started, that is during
the setup of the input and the circuit. Therefore these statements may not contain any simu-
lation output (voltage or current vectors), because it is simply not yet available. The syntax is
described in Chapt. 2.11.5. During the circuit setup all functions are evaluated, all parameters
are replaced by their resulting numerical values. Thus it will not be possible to get feedback
from a later stage (during or after simulation) to change any of the parameters.

2.16.2 Nonlinear sources

During the simulation, the B source (Chapt. 5) and their associated E and G sources, as well
as some devices (R, C, L) may contain expressions. These expressions may contain parameters
from above (evaluated immediately upon ngspice start up), numerical data, predefined func-
tions, but also node voltages and branch currents resulting from the simulation. The source
or device values are continuously updated during the simulation. Therefore the sources are
powerful tools to define non-linear behavior, you may even create new ‘devices’ by yourself.
Unfortunately the expression syntax (see Chapt. 5.1) and the predefined functions may deviate
from the ones for parameters listed in 2.11.1.

2.16.3 Control commands, Command scripts

Commands, as described in detail in Chapt. 13.5, may be used interactively, but also as a
command script enclosed in .controlendc lines. The scripts may contain expressions
(see Chapt. 13.2). The expressions may work upon simulation output vectors (of node voltages,
branch currents), as well as upon predefined or user defined vectors and variables, and are
invoked after the simulation. Parameters from 2.11.1 defined by the .param statement are not
allowed in these expressions. However you may define such parameters with . csparam (2.13).
Again the expression syntax (see Chapt. 13.2) will deviate from the one for parameters or B
sources listed in 2.11.1 and 5.1.

If you want to use parameters from 2.11.1 inside your control script, you may use .csparam
(2.13) or apply a trick by defining a voltage source with the parameter as its value, and then
have it available as a vector (e.g. after a transient simulation) with a then constant output (the
parameter). A feedback from here back into parameters (2.16.1) is never possible. Also you

2.16. PARAMETERS, FUNCTIONS, EXPRESSIONS, AND COMMAND SCRIPTS 69

cannot access non-linear sources of the preceding simulation. However you may start a first
simulation inside your control script, then evaluate its output using expressions, change some of
the element or model parameters with the alter and altermod statements (see Chapt. 13.5.3)
and then automatically start a new simulation.

Expressions and scripting are powerful tools within ngspice, and we will enhance the examples
given in Chapt. 17 continuously to describe these features.

70

CHAPTER 2. CIRCUIT DESCRIPTION

Chapter 3

Circuit Elements and Models

Data fields that are enclosed in less-than and greater-than signs (‘< >") are optional. All indi-
cated punctuation (parentheses, equal signs, etc.) is optional but indicate the presence of any
delimiter. Further, future implementations may require the punctuation as stated. A consis-
tent style adhering to the punctuation shown here makes the input easier to understand. With
respect to branch voltages and currents, ngspice uniformly uses the associated reference con-
vention (current flows in the direction of voltage drop).

3.1 About netlists, device instances, models and model pa-
rameters

The input to ngspice is a netlist, which lists all circuit elements, their interconnects and model
parameters.

71

72 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

Netlist example of a simple bipolar amplifier:

bipolar amplifier

R3 vcc intc 10k

R1 vcc intb 68k

R2 intb 0 10k

Cout out intc 10u

Cin intb in 10u

RLoad out 0 100k

Q1 intc intb 0 BC546B

VCC vcc 0 5
Vin in 0 dc 0 ac 1 sin(® 1m 500)

.model BC546B npn (IS=7.59E-15 VAF=73.4 BF=480 IKF=0.0962
+ NE=1.2665 ISE=3.278E-15 IKR=0.03 ISC=2.00E-13 NC=1.2 NR=1
+ BR=5 R(C=0.25 CJC=6.33E-12 FC=0.5 MJC=0.33 VJC=0.65

+ CJE=1.25E-11 MJE=0.55 VJE=0.65 TF=4.26E-10 ITF=0.6 VTF=3
+ XTF=20 RB=100 IRB=0.0001 RBM=10 RE=0.5 TR=1.50E-07)

.end

After the first line, which is always a title line only, the netlist starts. Each line here is a device
instance (except for lines starting with a dot *.”). We have simple circuit elements that consist of
a single line only, e.g. resistors like R3. In its simplest implementation, the resistor model does
not need any model parameters except for the resistance value (same for capacitors like Cout).
Netlist lines like R3 vcce intc 10k are called instance lines, as each line is the representation
of an instance of a generic model hard-coded into the ngspice simulator (here: resistor). R3
denotes the device name. Its first character R denotes a resistor. The next two tokens vcc intc
are the two nodes of the resistor, 10K is the resistance value. Equal node names on different
devices denote a connection between these nodes.

A more complex device is described by the instance line Q1 intc intb 0 BC546B. Q denotes
a bipolar transistor, intc intb O are the three nodes collector, base, and emitter. BC546B is the
name of a model parameter set, named after a real transistor and describing (together with the
implemented bipolar transistor model) its electrical behavior. The associated model parameters
are given in the line .model BC546B npn (IS=7.59E-15 ...). This is not an instance line,
because starting with a dot. It contains the model parameters as supplied by the device manu-
facturer or by people having them extracted from the electrical behavior and data sheet (to be
found e.g. on his or her web pages). BC546B is the name of the model parameter set and
relates it to the device instance. npn is the type of the device. The parameters (name=value)
are given in brackets.

The instance Q1... requires model parameters. For a quick test one may do without device
maker’s model parameters.

Simplified bipolar transistor instance and model parameter set:

Q1 intc intb 0 defaultmod
.model defaultmod npn

3.2. GENERAL OPTIONS 73

If you enter the bipolar transistor instance as shown above, you make use of a default model
parameter set supplied by ngspice. defaultmod is an arbitrary name. This procedure models a
generic bipolar transistor, not resembling any commercial device. The default parameter values
may be assessed by the command showmod Q1.

You will get more information on devices, instances and models in the following chapters 3.3
to 12.

3.2 General options

3.2.1 Paralleling devices with multiplier m

When it is needed to simulate several devices of the same kind in parallel, use the ‘m” (parallel
multiplier) instance parameter available for the devices listed in Table 3.1. This multiplies the
value of the element’s matrix stamp with m’s value. The netlist below shows how to correctly
use the parallel multiplier:

Multiple device example:

dl 2 0 mydiode m=10

d0l 1 0 mydiode
do2 1 0 mydiode
de3 1 0 mydiode
do4 1 0 mydiode
de5 1 0 mydiode
do6 1 0 mydiode
do7 1 0 mydiode
do8 1 0 mydiode
de9 1 0 mydiode
dle0 1 0 mydiode

The d1 instance connected between nodes 2 and 0 is equivalent to the 10 parallel devices
d01-d10 connected between nodes 1 and O.

The following devices support the multiplier m:

74 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

| First letter | Element description |

C Capacitor

Current-controlled current source (CCCs)
Voltage-controlled current source (VCCS)
Current source
Junction field effect transistor (JFET)
Inductor
Metal oxide field effect transistor (MOSFET)
Bipolar junction transistor (BJT)

Resistor
Subcircuit (for details see below)

Metal semiconductor field effect transistor (MESFET)

N X BO|Z | =~ Q|| T

Table 3.1: ngspice elements supporting multiplier 'm’

When the X line (e.g. x1 a b subl m=5) contains the token m=value (as shown) or m=expression,
subcircuit invocation is done in a special way. If an instance line of the subcircuit subl contains

any of the elements shown in table 3.1, then these elements are instantiated with the additional
parameter m (in this example having the value 5). If such an element already has an m multiplier
parameter, the element m is multiplied with the m derived from the X line. This works recur-
sively, meaning that if a subcircuit contains another subcircuit (a nested X line), then the latter

m parameter will be multiplied by the former one, and so on.

Example 1:

.param madd = 6
X1 a b subl m=5
.subckt subl al bl
Csl al bl C=5p m='madd-2’
.ends

In example 1, the capacitance between nodes a and b will be C = 5pFx(madd-2)*5 = 100pF.

Example 2:

.param madd = 4
X1 a b subl m=3
.subckt subl al bl
X2 al bl sub2 m='madd-2’
.ends
.subckt sub2 a2 b2
Cs2 a2 b2 3p m=2
.ends

In example 2, the capacitance between nodes a and b is C = 3pF*2x(madd-2)*3 = 36pF.

Using m may fail to correctly describe geometrical properties for real devices like MOS transis-
tors.

3.2. GENERAL OPTIONS 75

M1 d g s nmos W=0.3u L=0.18u m=20
is probably not be the same as
M1 d g s nmos W=6u L=0.18u

because the former may suffer from small width (or edge) effects, whereas the latter is simply
a wide transistor.

3.2.2 Instance and model parameters

The simple device example below consists of two lines: The device is defined on the instance
line, starting with Lload ...: The first letter determines the device type (an inductor in this
example). Following the device name are two nodes 1 and 2, then the inductance value lu
is set. The model name indl is a connection to the respective model line. Finally we have a
parameter on the instance line, together with its value dtemp=5. Parameters on an instance line
are called instance parameters.

The model line starts with the token .model, followed by the model name, the model type and
at least one model parameter, here tc1=0.001. There are complex models with more than 100
model parameters.

Lload 1 2 1lu indl dtemp=5
.MODEL indl L tcl1l=0.001

Instance parameters are listed in each of the following device descriptions. Model parameters
sometimes are given below as well, for complex models like the BSIM transistor models, they
are available in the model makers documentation. Instance parameters may also be placed in
the .model line. Thus they are recognized by each device instance referring to that model. Their
values may be overridden for a specific instance of a device by placing them additionally onto
its instance line.

3.2.3 Model binning

Binning is a kind of range partitioning for geometry dependent models like MOSFET’s. The
purpose is to cover larger geometry ranges (Width and Length) with higher accuracy than the
model built-in geometry formulas. Each size range described by the additional model parame-
ters LMIN, LMAX, WMIN and WMAX has its own model parameter set. These model cards
are defined by a number extension, like ‘nch.1’. ngspice has an algorithm to choose the right
model card by the requested W and L.

This is implemented for BSIM3 (7.6.3.3) and BSIM4 (7.6.3.4) models.

3.2.4 Initial conditions

Two different forms of initial conditions may be specified for some devices. The first form
is included to improve the dc convergence for circuits that contain more than one stable state.
If a device is specified OFF, the dc operating point is determined with the terminal voltages
for that device set to zero. After convergence is obtained, the program continues to iterate to

http://ngspice.sourceforge.net/literature.html

76 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

obtain the exact value for the terminal voltages. If a circuit has more than one dc stable state,
the OFF option can be used to force the solution to correspond to a desired state. If a device
is specified OFF when in reality the device is conducting, the program still obtains the correct
solution (assuming the solutions converge) but more iterations are required since the program
must independently converge to two separate solutions.

The .NODESET control line (see Chapt. 11.2.1) serves a similar purpose as the OFF option. The
.NODESET option is easier to apply and is the preferred means to aid convergence. The second
form of initial conditions are specified for use with the transient analysis. These are true ‘initial
conditions’ as opposed to the convergence aids above. See the description of the .IC control
line (Chapt. 11.2.2) and the . TRAN control line (Chapt. 11.3.10) for a detailed explanation of
initial conditions.

3.3 Elementary Devices
3.3.1 Resistors
General form:

RXXXXXXX n+ n- <resistance|r=>value <ac=val> <m=val>
+ <scale=val> <temp=val> <dtemp=val> <tcl=val> <tc2=val>
+ <noisy=0|1>

Examples:
Rl1 12 100
RC1 12 17 1K

R2 5 7 1K ac=2K
RL 1 4 2K m=2

Ngspice has a fairly complex model for resistors. It can simulate both discrete and semicon-
ductor resistors. Semiconductor resistors in ngspice means: resistors described by geometrical
parameters. So, do not expect detailed modeling of semiconductor effects.

n+ and n- are the two element nodes, value is the resistance (in ohms) and may be positive or
negative! but not zero. If value resistance 0 is given, it will be automatically set to le-12.

Simulating small valued resistors: If you need to simulate very small resis-
tors (0.001 Ohm or less), you should use CCVS (transresistance). It is less
efficient but improves overall numerical accuracy. Consider a small resis-
tance as a large conductance.

Ngspice can assign a resistor instance a different value for AC analysis, specified using the
ac keyword. This value must not be zero as described above. The AC resistance is used in
AC analysis only (neither Pole-Zero nor Noise). If you do not specify the ac parameter, it is
defaulted to value.

Ngspice calculates the nominal resistance as

!'A negative resistor modeling an active element can cause convergence problems, please avoid it.

3.3. ELEMENTARY DEVICES 77

R — VALUE scale
nom - m
3.1
Racnom = ac ;iale.

If you want to simulate temperature dependence of a resistor, you need to specify its temperature
coefficients, using a .model line or as instance parameters, like in the examples below:

Examples:

RE1 1 2 800 newres dtemp=5
.MODEL newres R tc1l=0.001

RE2 a b 1.4k tcl=2m tc2=1.4u

RE3 nl n2 1Meg tce=700m

The temperature coefficients tcl and tc2 describe a quadratic temperature dependence (see
equation 1.6) of the resistance. If given in the instance line (the R... line) their values will
override the tcl and tc2 of the .model line (3.3.3). Ngspice has an additional temperature
model equation 3.2 parameterized by tce given in model or instance line. If all parameters are
given (quadratic and exponential) the exponential temperature model is chosen.

R(T) = R(Tp) 1.01TCE'(T—T0>] (3.2)

where T is the circuit temperature, Tp is the nominal temperature, and 7TCE is the exponential
temperature coefficients.

Instance temperature is useful even if resistance does not vary with it, since the thermal noise
generated by a resistor depends on its absolute temperature. Resistors in ngspice generates two
different noises: thermal and flicker. While thermal noise is always generated in the resistor, to
add a flicker noise® source you have to add a .model card defining the flicker noise parameters.
It is possible to simulate resistors that do not generate any kind of noise using the noisy (or
noise) keyword and assigning zero to it, as in the following example:

Example:
Rmd 134 57 1.5k noisy=0

If you are interested in temperature effects or noise equations, read the next section on semi-
conductor resistors.

2Flicker noise can be used to model carbon resistors.

78 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

3.3.2 Semiconductor Resistors

General form:

RXXXXXXX n+ n- <value> <mname> <l=length> <w=width>
+ <temp=val> <dtemp=val> <m=val> <ac=val> <scale=val>
+ <noisy = 0]1>

Examples:

RLOAD 2 10 16K
RMOD 3 7 RMODEL L=10u W=1lu

This is the more general form of the resistor presented before (3.3.1) and allows the modeling of
temperature effects and for the calculation of the actual resistance value from strictly geometric
information and the specifications of the process. If value is specified, it overrides the geo-
metric information and defines the resistance. If mname is specified, then the resistance may be
calculated from the process information in the model mname and the given length and width.
If value is not specified, then mname and length must be specified. If width is not specified,
then it is taken from the default width given in the model.

The (optional) temp value is the temperature at which this device is to operate, and overrides
the temperature specification on the .option control line and the value specified in dtemp.

3.3.3 Semiconductor Resistor Model (R)

The resistor model consists of process-related device data that allow the resistance to be calcu-
lated from geometric information and to be corrected for temperature. The parameters available
are as follows:

’ Name \ Parameter \ Units \ Default \ Example ‘
TC1 first order temperature coeff. Q/oc 0.0 -
TC2 second order temperature coeff. Q/oc? 0.0 -
RSH sheet resistance Q/0 - 50

DEFW default width m le-6 2e-6
NARROW narrowing due to side etching m 0.0 le-7
SHORT shortening due to side etching m 0.0 le-7
TNOM parameter measurement temperature °C 27 50
KF flicker noise coefficient 0.0 le-25
AF flicker noise exponent 0.0 1.0
WF flicker noise width exponent 1.0
LF flicker noise length exponent 1.0
EF flicker noise frequency exponent 1.0
R (RES) | default value if element value not given Q - 1000

The sheet resistance is used with the narrowing parameter and 1 and w from the resistor device
to determine the nominal resistance by the formula:

3.3. ELEMENTARY DEVICES 79

[— SHORT
R,,, = rsh .
nom = IS0 N ARROW (3-3)

DEFW is used to supply a default value for w if one is not specified for the device. If either rsh or
1 is not specified, then the standard default resistance value of 1 mOhm is used. TNOM is used to
override the circuit-wide value given on the .options control line where the parameters of this
model have been measured at a different temperature. After the nominal resistance is calculated,
it is adjusted for temperature by the formula:

R(T) = R(TNOM) (1 +TCi(T —TNOM) +TC,(T — TNOM)z) (3.4)

where R(TNOM) = Ryom|Racnom- In the above formula, ‘7 represents the instance temperature,
which can be explicitly set using the temp keyword or calculated using the circuit temperature
and dtemp, if present. If both temp and dtemp are specified, the latter is ignored. Ngspice
improves SPICE’s resistors noise model, adding flicker noise (1/f) to it and the noisy (or
noise) keyword to simulate noiseless resistors. The thermal noise in resistors is modeled
according to the equation:

2= UAf (3.5)

where ‘k’ is the Boltzmann’s constant, and ‘7T’ the instance temperature.

Flicker noise model is:

AF
‘2_ KF[R

Rfn = WWF[LF (EF Af (3.6)

A small list of sheet resistances (in €/0) for conductors is shown below. The table represents
typical values for MOS processes in the 0.5 - 1 um

range. The table is taken from: N. Weste, K. Eshraghian - Principles of CMOS VLSI Design
2nd Edition, Addison Wesley.

’ Material \ Min. \ Typ. \ Max. ‘

Inter-metal (metall - metal2) | 0.005 | 0.007 | 0.1

Top-metal (metal3) 0.003 | 0.004 | 0.05
Polysilicon (poly) 15 20 30
Silicide 2 3 6

Diffusion (n+, p+) 10 25 100
Silicided diffusion 2 4 10

n-well 1000 | 2000 | 5000

80 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

3.3.4 Resistors, dependent on expressions (behavioral resistor)

General form:

RXXXXXXX n+ n- R = ’'expression’ <tcl=value> <tc2=value> <noisy=0>
RXXXXXXX n+ n- ’'expression’ <tcl=value> <tc2=value> <noisy=0>

Examples:

Rl rr @ r ="V(rr) < {Vt} ? {RO} : {2+xRO}’ tcl=2e-03 tc2=3.3e-06
R2 r2 rr r = {5k + 50«TEMPER}

.param rpl 20

R3 nol no2 r = '5k * rpl’ noisy=1

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in Chapt. 5.1.
It may contain parameters (2.11.1) and the special variables time, temper, and hertz (5.1.2).
An example file is given below. Small signal noise in the resistor (11.3.4) may be evaluated as
white noise, depending on resistance, temperature and tc1, tc2. To enable noise calculation, add
the flag noisy=1 to the instance line. As a default the behavioral resistor is noiseless.

Example input file for non-linear resistor:

Non-linear resistor

.param RO=1k Vi=1 Vt=0.5

* resistor depending on control voltage V(rr)
Rl rr @ r="V(rr) < {Vt} ? {RO} : {2xR0O}’
* control voltage

V1 rr © PWL(O @ 100u {Vi})

.control

unset askquit

tran 100n 100u uic

plot i(V1)

.endc

.end

3.3.5 Resistor with nonlinear r2_cmc or r3_cmc models

2-terminal resistor models developed by the resistor subcommittee of the CMC are made avail-
able via the OSDI interface by loading OpenVAF-compiled Verilog-A models (see chapter 9.2
for details). The goal was to have a standard 2-terminal resistor model with standard parameter
names and a standard, numerically well behaved nonlinearity model.

3.3. ELEMENTARY DEVICES 81

3.3.6 Capacitors
General form:

CXXXXXXX n+ n- <value> <mname> <m=val> <scale=val> <temp=val>
+ <dtemp=val> <tcl=val> <tc2=val> <ic=init_condition>

Examples:

CBYP 13 0 1UF
COSC 17 23 10U IC=3V

Ngspice provides a detailed model for capacitors. Capacitors in the netlist can be specified
giving their capacitance or their geometrical and physical characteristics. Following the original
SPICE3 ‘convention’, capacitors specified by their geometrical or physical characteristics are
called ‘semiconductor capacitors’ and are described in the next section.

In this first form n+ and n- are the positive and negative element nodes, respectively and value
is the capacitance in Farads.

Capacitance can be specified in the instance line as in the examples above or in a .model line,
as in the example below:

Cl 15 5 cstd
C2 2 7 cstd
.model cstd C cap=3n

Both capacitors have a capacitance of 3nF.

If you want to simulate temperature dependence of a capacitor, you need to specify its temper-
ature coefficients, using a .model line, like in the example below:

CEB 1 2 1lu capl dtemp=5
.MODEL capl C tcl1=0.001

The (optional) initial condition is the initial (time zero) value of capacitor voltage (in Volts).
Note that the initial conditions (if any) apply only if the uic option is specified on the .tran
control line.

Ngspice calculates the nominal capacitance as described below:

Com = value - scale - m 3.7

The temperature coefficients tcl and tc2 describe a quadratic temperature dependence (see
equation13.14) of the capacitance. If given in the instance line (the C... line) their values will
override the tcl and tc2 of the .model line (3.3.8).

82 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

3.3.7 Semiconductor Capacitors

General form:

CXXXXXXX n+ n- <value> <mname> <l=length> <w=width> <m=val>
+ <scale=val> <temp=val> <dtemp=val> <ic=init _condition>

Examples:

CLOAD 2 10 10P
CMOD 3 7 CMODEL L=10u W=1lu

This is the more general form of the Capacitor presented in section (3.3.6), and allows for the
calculation of the actual capacitance value from strictly geometric information and the speci-
fications of the process. If value is specified, it defines the capacitance and both process and
geometrical information are discarded. If value is not specified, the capacitance is calculated
from information contained model mname and the given length and width (1, w keywords, re-
spectively).

It is possible to specify mname only, without geometrical dimensions and set the capacitance in
the .model line (3.3.6).

3.3.8 Semiconductor Capacitor Model (C)

The capacitor model contains process information that may be used to compute the capacitance
from strictly geometric information.

| Name | Parameter | Units | Default | Example |
CAP model capacitance F 0.0 le-6
cJ junction bottom capacitance F[m? - Se-5
CISW junction sidewall capacitance F/m - 2e-11
DEFW default device width m le-6 2e-6
DEFL default device length m 0.0 le-6
| NARROW | narrowing due tosideetching | m | 00 [le7 |
’ SHORT \ shortening due to side etching \ m \ 0.0 \ le-7 ‘
’ TC1 \ first order temperature coeff. \ Ffoc \ 0.0 \ 0.001 ‘
’ TC2 \ second order temperature coeff. \ F/oc? \ 0.0 \ 0.0001 ‘
| TNOM | parameter measurement temperature | °C | 27 | 50 |
| DI | relative dielectric constant | Fm | - | 1 |
’ THICK \ insulator thickness \ m \ 0.0 \ le-9 ‘
The capacitor has a capacitance computed as:
If value is specified on the instance line then
Com = value - scale -m (3.8)

If model capacitance is specified then

3.3. ELEMENTARY DEVICES 83

Cihom = CAP -scale-m 3.9
If neither value nor CAP are specified, then geometrical and physical parameters are take into

account:

Co = CJ(I — SHORT)(w — NARROW) + 2CJSW(/ — SHORT + w — NARROW) (3.10)

CJ can be explicitly given on the .model line or calculated by physical parameters. When CJ is
not given, is calculated as:

If THICK is not zero:

CJ = o if Dlis specified,

G.11)
CJ= % otherwise.

If the relative dielectric constant is not specified the one for SiO2 is used. The values of the
constants are £ = 8.854214871e — 12% and &s,0, = 3.4531479969¢ — 11%. The nominal ca-
pacitance is then computed as:

Chom = Cpscalem (3.12)
After the nominal capacitance is calculated, it is adjusted for temperature by the formula:
C(T) = C(TNOM) (1 +TC (T —TNOM) +TC(T — TNOM)2> (3.13)
where C(TNOM) = Cpopm.

In the above formula, ‘7" represents the instance temperature, which can be explicitly set using
the temp keyword or calculated using the circuit temperature and dtemp, if present.

3.3.9 Capacitors, dependent on expressions (behavioral capacitor)

There are two forms for behavioral capacitors allowed:

1. Capacitance formulated expressions C = ’expression’

2. Charge formulated expressions Q = expression’

84

CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

General form:

CXXXXXXX n+ n- C = 'expression’ <tcl=value> <tc2=value>
CXXXXXXX n+ n- 'expression’ <tcl=value> <tc2=value>

CXXXXXXX n+ n- Q = 'expression’ <tcl=value> <tc2=value>

Examples:

Cl cc 0 c = "V(cc) < {vt} ? {C1} : {Ch}' tcl=-1e-03 tc2=1.3e-05
Cl abq= "lux(4+xatan(V(a,b)/4)*2+V(a,b))/3’

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of 1(vm)) and any other terms as given for the B source and described in Chapt. 5.1.
It may contain parameters (2.11.1) and the special variables time, temper, and hertz (5.1.2).

Example input file:

Behavioral Capacitor

.param Cl=5n Ch=1n Vt=1m I1=100n

.ic v(cc) =0 v(cec2) =0

* capacitor depending on control voltage V(cc)
Cl cc ® c = "'V(cc) < {vt} ? {C1l} : {Ch}’

I1 01 {11}

Exxx nl-copy n2 n2 cc2 1

Cxxx nl-copy n2 1

Bxxx cc2 n2 I = "(V(cc2) < {Vvt} ? {Cl} : {Ch})’ *x i(Exxx)
I2 n2 22 {I1}

vn2 n2 0 DC O

* measure charge by integrating current
aintl %id(1 cc) 2 time_count

aint2 %id(22 cc2) 3 time_count

.model time_count int(in_offset=0.0 gain=1.0
+ out_lower_limit=-1el2 out_upper_limit=1el2
+ limit_range=le-9 out_ic=0.0)

.control

unset askquit

tran 100n 100u

plot v(2)

plot v(cc) v(cc2)

.endc

.end

3.3. ELEMENTARY DEVICES 85

3.3.10 Inductors

General form:

LYYYYYYY n+ n- <value> <mname> <nt=val> <m=val>
+ <scale=val> <temp=val> <dtemp=val> <tcl=val>
+ <tc2=val> <ic=init_condition>

Examples:

LLINK 42 69 1UH
LSHUNT 23 51 10U IC=15.7MA

The inductor device implemented into ngspice has many enhancements over the original one.n+
and n- are the positive and negative element nodes, respectively. value is the inductance in
Henry. The initial condition (a curremt through L) becomes effective when the uic parameter
is set on the .tran line. Inductance can be specified in the instance line as in the examples
above or in a .model line, as in the example below:

L1 15 5 indmodl
L2 2 7 indmodl
.model indmodl L ind=3n

Both inductors have an inductance of 3nH.

The nt is used in conjunction with a .model line, and is used to specify the number of turns
of the inductor. If you want to simulate temperature dependence of an inductor, you need to
specify its temperature coefficients, using a .model line, like in the example below:

Lload 1 2 1lu indl dtemp=5
.MODEL indl L tcl=0.001

The (optional) initial condition is the initial (time zero) value of inductor current (in Amps) that
flows from n+, through the inductor, to n-. Note that the initial conditions (if any) apply only if
the UIC option is specified on the . tran analysis line.

Ngspice calculates the nominal inductance as described below:

value scale
Liuom = — (3.14)

3.3.11 Inductor model

The inductor model contains physical and geometrical information that may be used to compute
the inductance of some common topologies like solenoids and toroids, wound in air or other
material with constant magnetic permeability.

86 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

| Name Parameter | Units | Default | Example |

IND model inductance H 0.0 le-3

CSECT Ccross section m> 0.0 le-6
DIA coil diameter m 0.0 le-3

LENGTH length m 0.0 le-2

TC1 first order temperature coeff. H/oc 0.0 0.001
TC2 second order temperature coeff. H/oc? 0.0 0.0001

TNOM | parameter measurement temperature | °C 27 50
NT number of turns - 0.0 10
MU relative magnetic permeability - 1.0 -

The inductor’s inductance is computed as follows:

If value is specified on the instance line then

value scale
Lyom = ——— (3.15)
m
If model inductance is specified then
IND scale
Lpom = — (3.16)

If neither value nor IND are specified, then geometrical and physical parameters are taken into
account. In the following formulas

NT refers to both instance and model parameter (instance parameter overrides model parameter):

If LENGTH is not zero:

4LENGTH

__ MU g NT2 CSECT .
Lyom = —Tpngmim— Otherwise.

{Lm — MUBNT ZDIA® ey A i specified, 517

with g = 1.25663706143592%. DIA takes preference over CSECT. k[is the geometry cor-
rection factor according to Lundin (see D. W. Knight, pp. 35-36), which is important when
inductor length and diameter have the same order of magnitude. After the nominal inductance
is calculated, it is adjusted for temperature by the formula

L(T) = L(TNOM) (1 +TCy(T — TNOM) +TC(T — TNOM)2> , (3.18)

where L(TNOM) = L,,,,. In the above formula, ‘7" represents the instance temperature, which
can be explicitly set using the temp keyword or calculated using the circuit temperature and
dtemp, if present.

https://g3ynh.info/zdocs/magnetics/Solenoids.pdf

3.3. ELEMENTARY DEVICES 87

3.3.12 Coupled (Mutual) Inductors

General form:
KXXXXXXX LYYYYYYY LZZZ7777 value
Examples:

K43 LAA LBB 0.999
KXFRMR L1 L2 0.87

LYYYYYYY and LZZZ7777 are the names of the two coupled inductors, and value is the
coefficient of coupling, K, which must be greater than 0 and less than or equal to 1. Using
the ‘dot” convention for drawing the coupled inductors, place a ‘dot’ on the first node of each
inductor. If you have more than two inductors interacting, pairwise coupling is supported.

Pairwise coupling of more than two inductors:

L1 10 10u
L2 2 0 1lu
L3 3 0 10u

K12 L1 L2 0.99
K23 L2 L3 0.99
K13 L1 L3 0.98

When there are more than two inductors coupled for interaction, some combinations of coupling
constants are not possible physically because the magnetic fields then would violate energy
conservation. ngspice checks the coupling matrix for such conditions and issues a warning.

Coupling of more than two inductors in a single K statement is supported as well. All coupling
constants are then equal.

Coupling of more than two inductors in a single statement:

L1 10 10u
L2 2 0 1lu
L3 3 0 10u

K123 L1 L2 L3 0.97

88 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

3.3.13 Inductors, dependent on expressions (behavioral inductor)

General form:

LXXXXXXX n+ n- L = "expression’ <tcl=value> <tc2=value>
LXXXXXXX n+ n- ’expression’ <tcl=value> <tc2=value>

Examples:

L1 12 Tl L = "i(Vm) < {It} ? {L1} : {Lh}’ tcl=-4e-03 tc2=6e-05

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in Chapt. 5.1.
It may contain parameters (2.11.1) and the special variables time, temper, and hertz (5.1.2).

3.3. ELEMENTARY DEVICES 89

Example input file:

Variable inductor
.param L1=0.5m Lh=5m It=50u Vi=2m
.ic v(int21) =0

* variable inductor depending on control current i(Vm)
L1 12 111 L = "i(Vm) < {It} ? {L1} : {Lh}’

* measure current through inductor

vm 111 0 dc 0

* voltage on inductor

V1 12 0 {vi}

x fixed inductor

L3 33 331 {L1}

* measure current through inductor
vm33 331 0 dc 0

* voltage on inductor

V3 33 0 {Vi}

* non linear inductor (discrete setup)

F21 int21 0 B21 -1

L21 int21 0 1

B21 n1 n2 V = "(i(Vm21) < {It} ? {L1} : {Lh})’' * v(int21)
* measure current through inductor

vm21l n2 0 dc 0O

V21 nl1 0 {Vi}

.control

unset askquit

tran 1lu 100u uic
plot i(Vm) i(vm33)
plot i(vm21l) i(vm33)
plot i(vm)-i(vm21)
.endc

.end

3.3.14 Capacitor or inductor with initial conditions

The simulator supports the specification of voltage and current initial conditions on capaci-
tor and inductor models, respectively. These models are not the standard ones supplied with
SPICE3, but are in fact code models that can be substituted for the SPICE models when re-
alistic initial conditions are required. For details please refer to Chapter 8. A XSPICE deck
example using these models is shown below:

*
* This circuit contains a capacitor and an inductor with

90 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

initial conditions on them. Each of the components

has a parallel resistor so that an exponential decay

of the initial condition occurs with a time constant of
1 second.

B S S

al 1 0 cap

.model cap capacitoric (c=1000uf ic=1)
ri 10 1k

*

a2 2 0 ind

.model ind inductoric (1=1H ic=1)
rz201.0

*

.control

tran 0.01 3

plot v(1) v(2)

.endc

.end

3.3.15 Switches

Two types of switches are available: a voltage controlled switch (type SXXXXXX, model SW)
and a current controlled switch (type WXXXXXXX, model CSW). A switching hysteresis may
be defined, as well as on- and off-resistances (0 < R <).

General form:

SXXXXXXX N+ N- NC+ NC- MODEL <ON><OFF>
WYYYYYYY N+ N- VNAM MODEL <ON><OFF>

Examples:

sl 12 3 4 switchl ON

s2 56 3 0 sm2 off

Switchl 1 2 10 0@ smodell

wl 1 2 vclock switchmodl

W2 3 0 vramp sml ON

wreset 5 6 vclck lossyswitch OFF

Nodes 1 and 2 are the nodes between which the switch terminals are connected. The model
name is mandatory while the initial conditions are optional. For the voltage controlled switch,
nodes 3 and 4 are the positive and negative controlling nodes respectively. For the current
controlled switch, the controlling current is that through the specified voltage source. The
direction of positive controlling current flow is from the positive node, through the source, to
the negative node.

The instance parameters ON or OFF are required, when the controlling voltage (current) starts
inside the range of the hysteresis loop (different outputs during forward vs. backward voltage
or current ramp). Then ON or OFF determine the initial state of the switch.

3.3. ELEMENTARY DEVICES 91

3.3.16 Switch Model (SW/CSW)

The switch model allows an almost ideal switch to be described in ngspice. The switch is not
quite ideal, in that the resistance can not change from O to infinity, but must always have a finite
positive value. By proper selection of the on and off resistances, they can be effectively zero
and infinity in comparison to other circuit elements. The parameters available are shown below.

’ Name \ Parameter \ Units \ Default \ Switch model ‘
VT | threshold voltage A% 0.0 SW
IT threshold current A 0.0 CSW
VH | hysteresis voltage | V 0.0 SW
IH | hysteresis current | A 0.0 CSW
RON on resistance Q 1.0 SW,CSW
ROFF off resistance Q 1.0e+12 (%) SW,CSW

(*) Or 1/GMIN, if you have set GMIN to any other value, see the .OPTIONS control line
(11.1.2) for a description of GMIN, its default value results in an off-resistance of 1.0e+12
ohms.

The use of an ideal element that is highly nonlinear such as a switch can cause large discontinu-
ities to occur in the circuit node voltages. A rapid change such as that associated with a switch
changing state can cause numerical round-off or tolerance problems leading to erroneous results
or time step difficulties. The user of switches can improve the situation by taking the following
steps:

* First, it is wise to set the ideal switch impedance just high or low enough to be negli-
gible with respect to other circuit elements. Using switch impedances that are close to
‘ideal’ in all cases aggravates the problem of discontinuities mentioned above. Of course,
when modeling real devices such as MOSFETS, the on resistance should be adjusted to a
realistic level depending on the size of the device being modeled.

 If a wide range of ON to OFF resistance must be used in the switches (ROFF/RON >
le+12), then the tolerance on errors allowed during transient analysis should be decreased
by using the .OPTIONS control line and specifying TRTOL to be less than the default value
of 7.0.

* When switches are placed around capacitors, then the option CHGTOL should also be re-
duced. Suggested values for these two options are 1.0 and le-16 respectively. These
changes inform ngspice to be more careful around the switch points so that no errors are
made due to the rapid change in the circuit.

92 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

Example input file:

Switch test

.tran 2us 5ms

xswitch control voltage

vl 10DCO0.0 PWL(O 0 2e-3 2 4e-3 0)

xswitch control voltage starting inside hysteresis window
xplease note influence of instance parameters ON, OFF

v2 2 0 DC 0.0 PWL(O 0.9 2e-3 2 4e-3 0.4)

xswitch control current

i3 3 0 DC 0.0 PWL(O O 2e-3 2m 4e-3 0) $ <--- switch control current
xload voltage

vd 4 0 DC 2.0

xinput load for current source i3

r3 3 33 10k

vm3 0 33 dc 0 $ <--- measure the current

* ouput load resistors

rio 4 10 10k

r20 4 20 10k

r30 4 30 10k

r4a0 4 40 10k

*

s1 10 0 1 0 switchl OFF

s2 20 0 2 0 switchl OFF

s3 30 0 2 0 switchl ON

.model switchl sw vt=1 vh=0.2 ron=1 roff=10k

*

wl 40 0 vm3 wswitchl off

.model wswitchl csw it=1lm ih=0.2m ron=1 roff=10k

*

.control

run

set xbrushwidth=3

plot v(1) v(10)

plot v(10) vs v(1) retraceplot $ <-- get hysteresis loop
plot v(2) v(20) $ <--- different initial values

plot v(20) vs v(2) retraceplot $ <-- get hysteresis loop
plot v(2) v(30) $ <--- different initial values

plot v(30) vs v(2) retraceplot $ <-- get hysteresis loop
plot v(40) vs vm3#branch retraceplot $ <--- current controlled switch hysteresis
.endc

.end

Chapter 4

Voltage and Current Sources

4.1 Independent Sources for Voltage or Current
General form:

VXXXXXXX N+ N- <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>
+ <DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>

IYYYYYYY N+ N- <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>
+ <DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>

Examples:

VCC 10 0 DC 6

VIN 13 2 0.001 AC 1 SIN(O0 1 1MEG)

ISRC 23 21 AC 0.333 45.0 SFFM(0 1 16K 5 1K)
VMEAS 12 9

VCARRIER 1 0 DISTOF1 0.1 -90.0

VMODULATOR 2 0 DISTOF2 0.01

IIN1 1 5 AC 1 DISTOF1 DISTOF2 0.001

n+ and n- are the positive and negative nodes, respectively. Note that voltage sources need not
be grounded. Positive current is assumed to flow from the positive node, through the source, to
the negative node. A current source of positive value forces current to flow out of the n+ node,
through the source, and into the n- node. Voltage sources, in addition to being used for circuit
excitation, are the ‘ammeters’ for ngspice, that is, zero valued voltage sources may be inserted
into the circuit for the purpose of measuring current. They of course have no effect on circuit
operation since they represent short-circuits.

DC/TRAN is the dc and transient analysis value of the source. If the source value is zero both for
dc and transient analyses, this value may be omitted. If the source value is time-invariant (e.g.,
a power supply), then the value may optionally be preceded by the letters DC.

The keyword AC together with its value ACMAG (and optional value ACPHASE) are required when
the voltage or current source is intended to become the small signal source in an ac simulation.

93

94 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

ACMAG is the ac magnitude and ACPHASE is the ac phase. The voltage or current source then
will become a reference for all nodes. All small signal node amplitude values obtained after the
simulation have been divided by the reference ACMAG. A typcal ACMAG value thus may be unity.
Any measured phase has been shifted by ACPHASE. If ACPHASE is omitted, a value of zero is
assumed. If the source is not an ac small-signal input, the keyword AC and the ac values are to
be avoided.

DISTOF1 and DISTOF2 are the keywords that specify that the independent source has distortion
inputs at the frequencies F1 and F2 respectively (see the description of the .DISTO control line).
The keywords may be followed by an optional magnitude and phase. The default values of the
magnitude and phase are 1.0 and 0.0 respectively.

Any independent source can be assigned a time-dependent value for transient analysis. If a
source is assigned a time-dependent value, the time-zero value is used for dc analysis. There
are nine independent source functions:

* pulse,

* exponential,

¢ sinusoidal,

* piece-wise linear,

* single-frequency FM,

* AM,

¢ transient noise,

* random voltages or currents,

* external data (only with ngspice shared library),

* and RF port

If parameters other than source values are omitted or set to zero, the default values shown are
assumed. TSTEP is the printing increment and TSTOP is the final time — see the . TRAN control
line for an explanation.

4.1.1 Pulse

General form:

PULSE(V1 V2 TD TR TF PW PER NP)

Examples:

VIN 3 0 PULSE(-1 1 2NS 2NS 2NS 50NS 100NS 5)

4.1. INDEPENDENT SOURCES FOR VOLTAGE OR CURRENT 95

| Name | Parameter | Default Value | Units |
A\ Initial value - V,A
V2 Pulsed value - V,A
TD Delay time 0.0 sec
TR Rise time TSTEP sec
TF Fall time TSTEP sec
PW Pulse width TSTOP sec
PER Period TSTOP sec
NP | Number of Pulses *) unlimited -

A single pulse, without repetition count or phase offset, is described by the following table:

Time \ Value ‘
0 \'2!
TD V1
TD+TR V2

TD+TR+PW V2
TD+TR+PW+TF | V1
TSTOP Vi

Intermediate points are determined by linear interpolation.

*) NP set to 0 or omitted denotes unlimited pulses. If compatibility mode (see 12.14.1) set ng-
behavior=xs is set in .spiceinit, the 8th parameter is the phase of the pulse signal (in degrees),
which results in forward running (pos. value) or a delay (neg. value) of the pulse sequence.

4.1.2 Sinusoidal
General form:

SIN(VO VA FREQ TD THETA PHASE)
Examples:

VIN 3 0 SIN(O0 1 100MEG 1INS 1E1l0)

’ Name \ Parameter \ Default Value \ Units ‘
VO Offset - V,A
VA Amplitude - V,A

FREQ Frequency 1/TsTop Hz

TD Delay 0.0 sec

THETA | Damping factor 0.0 1/sec
PHASE Phase 0.0 degrees

The shape of the waveform is described by the following formula:

()= 140 if0<t<TD
| VO+VAe (-TDITHETAGin (2. FREQ - (t — TD) + PHASE) if TD <t < TSTOP.
(4.1)

96 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

4.1.3 Exponential

General form:
EXP(V1 V2 TD1 TAUl1l TD2 TAU2)
Examples:

VIN 3 0 EXP(-4 -1 2NS 30NS 60NS 40NS)

’ Name \ Parameter \ Default Value \ Units ‘
Vi1 Initial value - V,A
V2 pulsed value - V,A

TD1 rise delay time 0.0 sec
TAU1 | rise time constant TSTEP sec
TD2 fall delay time | TDI+TSTEP | sec
TAU?2 | fall time constant TSTEP sec

The shape of the waveform is described by the following formula:

LetV21 =V2-V1,V12=V1-V2:

Vi if0<r<TDI,
(t—TD1)

V()= Vi+val (1-e Tt) it TD1 <1< TD2,
V1+V2l (1 _677“;/{[?1“) LVI2 (1 —e*‘%’zz)) ifTD2 <t < TSTOP.

4.1.4 Piece-Wise Linear
General form:

PWL(T1 V1 <T2 V2 T3 V3 T4 V4 ...>) <r=value> <td=value>
Examples:

VCLOCK 7 5 PWL(O -7 1ONS -7 1INS -3 17NS -3 18NS -7 50NS -7)
+ r=0 td=15NS

4.2)

Each pair of values (7;, V;) specifies that the value of the source is V; (in Volts or Amps) at
time = 7;. The value of the source at intermediate values of time is determined by using linear
interpolation on the input values. The parameter r determines a repeat time point. If r is set to
-1 or is not given, the whole sequence of values (7;, V;) is issued once only, then the output stays
at its final value. If r = 0, the whole sequence from time O to time 7# is repeated forever. If r =
10ns, the sequence between 10ns and 50ns is repeated forever. The r value has to be one of the
time points T1 to T(n-1) of the PWL sequence, not the last point Tn. If #d is given, the whole
PWL sequence is delayed by the value of #d. Please note that for now r and td are available only

with the voltage source, not with the current source.

4.1. INDEPENDENT SOURCES FOR VOLTAGE OR CURRENT

4.1.5 Single-Frequency FM

General Form:
SFFM(VO VA FM MDI FC TD PHASEM PHASEC)
Examples:

V1 12 0 SFFM(O0 2 20 45 1k 1m 0 0)

Name \ Parameter \ Default value \ Units
VO Offset - V,A
VA Amplitude - V,A
FM Modulating frequency 5/TsTop Hz

MDI Modulation index 90
FC Carrier frequency 500/TSTOP Hz
TD Signal delay 0.0 s

PHASEM | Modulation signal phase 0.0 degrees
PHASEC Carrier signal phase 0.0 degrees

The shape of the waveform is described by the following equation:

V(1) =Vo+Vy-

97

sin (27 - FC - (t — TD) +MDI sin (21 - FM - (t — TD) + PHASEM) + PHASEC) (4.3)

with7 > TD, else V(t) = 0.

MDI is limited to 0 <= MDI <= FC/FM. VO and VA have to be given always.

4.1.6 Amplitude modulated source (AM)

General form:
AM(VO VMO VMA FM FC TD PHASEM PHASEC)
Examples:

Vil 12 0 AM(0.5 2 1.8 20K 5MEG 1m)

98 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

| Name | Parameter | Default value | Units |
VO Overall offset - V,A
VMO Modulation signal offset - V,A
VMA Modulation signal amplitude 1 V,A
FM Modulation signal frequency 5/TsTop Hz
FC Carrier signal frequency 500/7sTOP Hz
TD Overall delay 0.0 s
PHASEM Modulation signal phase 0.0 degrees
PHASEC Carrier signal phase 0.0 degrees

The shape of the waveform is described by the following equation:

V(1) =VO+ (VMO +VMA -sin(21- FM - (t — TD) + PHASEM))
sin(271- FC- (t — TD) 4+ PHASEC) (4.4)

with7 > TD, else V(1) = 0.
VO and VMO have to be given always.

With the modulation depth, given by VMA/VMO, varied between 0 and 1, a standard amplitude
modulated signal is provided. VMO then also acts as overall multiplier to the signal. On the
other hand one may set VMO to 0, then obtaining a signal with double side band and suppressed
carrier.

4.1.7 Transient noise source

General form:
TRNOISE(NA NT NALPHA NAMP RTSAM RTSCAPT RTSEMT)
Examples:

VNoiw 1 0 DC © TRNOISE(20n 0.5n 0 0) $ white
VNoilof 1 @ DC © TRNOISE(® 10p 1.1 12p) $ 1/f
VNoiwlof 1 @ DC © TRNOISE(20 10p 1.1 12p) $ white and 1/f
IALL 10 © DC 0 trnoise(1m 1u 1.0 0.1m 15m 22u 50u)
$ white, 1/f, RTS

Transient noise is an experimental feature allowing (low frequency) transient noise injection and
analysis. See Chapt. 11.3.11 for a detailed description. NA is the Gaussian noise rms voltage
amplitude, NT is the time between sample values (breakpoints will be enforced on multiples of
this value). NALPHA (exponent to the frequency dependency), NAMP (rms voltage or current am-
plitude) are the parameters for 1/f noise, RTSAM the random telegraph signal amplitude, RTSCAPT
the mean of the exponential distribution of the trap capture time, and RTSEMT its emission time
mean. White Gaussian, 1/f, and RTS noise may be combined into a single statement.

4.1. INDEPENDENT SOURCES FOR VOLTAGE OR CURRENT 99

Name Parameter | Default value | Units |
NA Rms noise amplitude (Gaussian) - V,A
NT Time step - sec

NALPHA 1/f exponent O<a<?2 -

NAMP Amplitude (1/f) - V,A

RTSAM Amplitude - V,A
RTSCAPT Trap capture time - sec
RTSEMT Trap emission time - sec

If you set NT and RTSAM to 0, the noise option TRNOISE ... is ignored. Thus you may switch off
the noise contribution of an individual voltage source VNOI by the command

[0 00] $ no noise

alter @vnoi[trnoise]

alter @vrts[trnoise] [OO0 O 0O00O00O0O] $no noise
See Chapt. 13.5.3 for the alter command.

You may switch off all TRNOISE noise sources by setting

set notrnoise

to your .spiceinit file (for all your simulations) or into your control section in front of the next
run or tran command (for this specific and all following simulations). The command

unset notrnoise
will reinstate all noise sources.

The noise generators are implemented into the independent voltage (vsrc) and current (isrc)
sources.

4.1.8 Random voltage source

The TRRANDOM option yields statistically distributed voltage values, derived from the ngspice
random number generator. These values may be used in the transient simulation directly within
a circuit, e.g. for generating a specific noise voltage, but especially they may be used in the con-
trol of behavioral sources (B, E, G sources 5, voltage controllable A sources 8, capacitors 3.3.9,
inductors 3.3.13, or resistors 3.3.4) to simulate the circuit dependence on statistically varying
device parameters. A Monte-Carlo simulation may thus be handled in a single simulation run.

General form:

TRRANDOM(TYPE TS <TD <PARAM1 <PARAM2>>>)

Examples:

VR1 r1 0 dc 0 trrandom (2 10m 0 1) ; Gaussian with mean 0
V110 dc O trrandom (1 1u 0.5u 0.5 0.5) ; Uniform between 0 and 1

100 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

TYPE determines the random variates generated: 1 is uniformly distributed, 2 Gaussian, 3 expo-
nential, 4 Poisson. TS is the duration of an individual voltage value. TD is a time delay with the
output staying at the Offset or Mean value, before the random voltage values start up.

PARAM1 and PARAM2 depend on the type selected. The uniform distribution issues values in the
range of +PARAM1 around the offset PARAM2. The Gaussian distribution issues values with the
standard deviation of PARAM1 around the mean PARAM2.

| TYPE | description | | PARAMI1 [default | [PARAM2 | default |
1 Uniform Range 1 Offset 0
2 Gaussian Standard Dev. 1 Mean 0
3 Exponential Mean 1 Offset 0
4 Poisson Lambda 1 Offset 0

4.1.9 External voltage or current input

General form:
EXTERNAL
Examples:

Vex 1 0 dc 0 external
Iex il i2 dc 0 external <m = xx>

Voltages or currents may be set from the calling process, if ngspice is compiled as a shared
library and loaded by the process. See Chapter 15 and 15.3.3.11 for an explanation.

4.1.10 Arbitrary Phase Sources

ngspice supports arbitrary phase independent sources that output at TIME=0.0 a value cor-
responding to some specified phase shift. Other versions of SPICE use the TD (delay time)
parameter to set phase-shifted sources to their time-zero value until the delay time has elapsed.
The ngspice phase parameter is specified in degrees and is included after the SPICE3 parame-
ters normally used to specify an independent source. Partial examples of usage for pulse and
sine waveforms are shown below:

* Phase shift is specified as final parameter

* on the independent source cards. Phase shift for both of the
* following is specified as +45 degrees

*

vl 100.0 sin(06 1 1k © 0 45.0)

rit 1 0 1k

*

v2 2 0 0.0 pulse(-1 1 0 1le-5 1le-5 5e-4 1le-3 45.0)

r2z 2 0 1k

*

4.2. LINEAR DEPENDENT SOURCES 101

4.1.11 RF Port

A voltage source VSRC may be defined as RF Port. To do so, there are at least two more
parameters required. The first is portnum (integer) which defines the VSRC as a RF Port.
Portnum of all VSRCs defined as RF ports must start from 1 and count up to the number of RF
ports. You cannot have duplicate portnums. Then you have Z0 (real) which defines the internal
impedance. If not provided, its default value is 5S00hm. When declaring a RF ports, the VSRC
now become a VSRC with Z0 Ohm in series. This extra resistor affects all simulations.

General form:

DC 0 AC 1 portnum nl <z0 n2>
Examples:

V1 in 0 dc 0 ac 1 portnum 1 z0 100

At least two ports are required for the S-parameter simulation with the command .sp (11.3.8).
If portnum is not provided, the voltage source VRSC behaves as normal.

4.2 Linear Dependent Sources

Ngspice allows circuits to contain linear dependent sources characterized by any of the four
equations

’i:gv\v:ev\i:fi\v:hi‘

where g, e, f, and h are constants representing transconductance, voltage gain, current gain,
and transresistance, respectively. Non-linear dependent sources for voltages or currents (B, E,
G) are described in Chapt. 5.

4.2.1 Gxxxx: Linear Voltage-Controlled Current Sources (VCCS)

General form:
GXXXXXXX N+ N- NC+ NC- VALUE <m=val>
Examples:

Gl120500.1

n+ and n- are the positive and negative nodes, respectively. Current flow is from the positive
node, through the source, to the negative

node. nc+ and nc- are the positive and negative controlling nodes, respectively. value is the
transconductance (in mhos). m is an optional multiplier to the output current. val may be a
numerical value or an expression according to 2.11.5 containing references to other parameters.
Instance parameters are listed in chapt. 27.3.6.

102 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

4.2.2 Exxxx: Linear Voltage-Controlled Voltage Sources (VCVS)

General form:
EXXXXXXX N+ N- NC+ NC- VALUE
Examples:

El 2314 12.0

n+ is the positive node, and n- is the negative node. nc+ and nc- are the positive and negative
controlling nodes, respectively. value is the voltage gain. Instance parameters are listed in
chapt. 27.3.7.

4.2.3 Fxxxx: Linear Current-Controlled Current Sources (CCCS)

General form:
FXXXXXXX N+ N- VNAM VALUE <m=val>
Examples:

F1 13 5 VSENS 5 m=2

n+ and n- are the positive and negative nodes, respectively. Current flow is from the positive
node, through the source, to the negative node. vnam is the name of a voltage source through
which the controlling current flows. The direction of positive controlling current flow is from
the positive node, through the source, to the negative node of vnam. value is the current gain.
m is an optional multiplier to the output current. Instance parameters are listed in chapt. 27.3.4.

4.2.4 Hxxxx: Linear Current-Controlled Voltage Sources (CCVS)

General form:
HXXXXXXX N+ N- VNAM VALUE
Examples:

HX 5 17 VZ 0.5K

n+ and n- are the positive and negative nodes, respectively. vnam is the name of a voltage source
through which the controlling current flows. The direction of positive controlling current flow
is from the positive node, through the source, to the negative node of vnam. value is the
transresistance (in ohms). Instance parameters are listed in chapt. 27.3.5.

4.2. LINEAR DEPENDENT SOURCES 103

4.2.5 Polynomial Source Compatibility

Dependent polynomial sources available in SPICE2G6 are fully supported in ngspice using the
XSPICE extension (21.1). The form used to specify these sources is shown in Table 4.1. For
details on its usage please see Chapt. 5.5.

Dependent Polynomial Sources
Source Type \ Instance Card

POLYNOMIAL VCVS | EXXXXXXX N+ N- POLY(ND) NC1+ NCI- PO (P1...)
POLYNOMIAL VCCS | GXXXXXXX N+ N- POLY(ND) NC1+ NCI1- PO (P1...)

POLYNOMIAL CCCS | FXXXXXXX N+ N- POLY(ND) VNAM1 !VNAM2...? PO (P1...)

POLYNOMIAL CCVS | HXXXXXXX N+ N- POLY(ND) VNAM1 |VNAM2...? PO (P1...)

Table 4.1: Dependent Polynomial Sources

104 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

Chapter 5

Non-linear Dependent Sources (Behavioral
Sources)

The non-linear dependent sources B (see Chapt. 5.1), E (see 5.2), G see (5.3) described in this
chapter allow the generation of voltages or currents that result from evaluating a mathematical
expression. Internally E and G sources are converted to the more general B source. All three
sources may be used to introduce behavioral modeling and analysis.

5.1 Bxxxx: Nonlinear dependent source (ASRC)

5.1.1 Syntax and usage

General form:

BXXXXXXX n+ n- <i=expr> <v=expr> <tcl=value> <tc2=value>
+ <temp=value> <dtemp=value>

Examples:
Bl 0 1 I=cos(v(1l))+sin(v(2))
B2 0 1 V= n(cos(log(v(l 2)7°2)))-v(3)"4+v(2)"v (1)
B3 3 4 I=17
B4 3 4 V=exp(pi™i(vdd))
B5 2 0V=V() < {Vlow} ? {Vlow} :
+ V(1) > {Vhigh} ? {Vhigh} : 1)

n+ is the positive node, and n- is the negative node. The values of the V and I parameters
determine the voltages and currents across and through the device, respectively. If I is given
then the device is a current source, and if V is given the device is a voltage source. One and only
one of these parameters must be given. All instance parameters are listed in chapter 27.3.1.

A simple model is implemented for temperature behavior by the formula:

I(T) = I[(TNOM) (1 L TCy(T — TNOM) +TCo(T — TNOM)2> (5.1)

105

106 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

or

V(T) = V(TNOM) (1 L TCy(T — TNOM) +TC(T — TNOM)2> (5.2)

In the above formula, ‘7" represents the instance temperature, which can be explicitly set using
the temp keyword or calculated using the circuit temperature and dtemp, if present. If both
temp and dtemp are specified, the latter is ignored.

The small-signal AC behavior of the nonlinear source is a linear dependent source (or sources)
with a proportionality constant equal to the derivative (or derivatives) of the source at the DC
operating point. The expressions given for V and I may be any function of voltages and currents
through voltage sources in the system.

The following functions of a single real variable are defined:

Trigonometric functions: cos, sin, tan, acos, asin, atan

Hyperbolic functions: cosh, sinh, acosh, asinh, atanh

Exponential and logarithmic: exp, In, log, log10 (In, log with base e, log10 with base 10)
Other: abs, sqrt, u, u2, uramp, floor, ceil, i

Functions of two variables are min, max, pow, **, pwr, *

Functions of three variables are a ? b:c

For convergence reasons the ‘exp’ function has a limit of 14 for its argument, beyond that value
it will increase linearily. The function ‘u’ is the unit step function, with a value of one for
arguments greater than zero, a value of 0.5 at zero, and a value of zero for arguments less than
zero. The function ‘u2’ returns a value of zero for arguments less than zero, one for arguments
greater than one and assumes the value of the argument between these limits. The function
‘uramp’ is the integral of the unit step: for an input x, the value is zero if x is less than zero,
or, if x is greater than or equal to zero, the value is x. These three functions are useful in
synthesizing piece-wise non-linear functions, though convergence may be adversely affected.

The function i (xyz) returns the current through the first node of device instance xyz.
The following standard operators are defined: +, -, *, /, *, unary -
Logical operators are !=, <>, >=, <=, ==>, <, ||, &&, !

A ternary function is defined asa ? b : ¢, which means IF a, THEN b, ELSE c. Be
sure to place a space in front of ‘?’ to allow the parser distinguishing it from other tokens.

The B source functions pow, **, ~, and pwr need some special care to avoid undefined regions
in x1, as they differ from the common mathematical usage (and from the functions depicted in
chapt. 2.11.5).

The functions y = pow(x1,x2), x1**x2, and x1°x2 , all of them describing y = x1*2, resolve
to the following:

y = pow(fabs(x1l), x2)

5.1. BXXXX: NONLINEAR DEPENDENT SOURCE (ASRC) 107

pow in the preceding line is the standard C math library function.

The functiony = pwr(x1,x2) resolves to

if (x1 < 0.0)

y = (-pow(-x1, x2));
else

y = (pow(x1l, x2));

pow here again is the standard C math library function.

Example: Ternary function

* B source test Clamped voltage source

* C. P. Basso "Switched-mode power supplies", New York, 2008
.param Vhigh = 4.6

.param Vliow = 0.4

Vinl 1 0 DC 0 PWL(® 0 1u 5)

Bcl 2 0 V =V(1) < Vlow ? Vliow : V(1) > Vhigh ? Vhigh : V(1)
.control

unset askquit

tran 5n 1lu

plot V(2) vs V(1)

.endc

.end

If the argument of log, In, or sqrt becomes less than zero, the absolute value of the argument is
used. If a divisor becomes zero or the argument of log or In becomes zero, an error will result.
Other problems may occur when the argument for a function in a partial derivative enters a
region where that function is undefined.

Parameters may be used like { Vlow} shown in the example above. Parameters will be evaluated
upon set up of the circuit, vectors like V(1) will be evaluated during the simulation.

To get time into the expression you can integrate the current from a constant current source
with a capacitor and use the resulting voltage (don’t forget to set the initial voltage across the
capacitor).

Non-linear resistors, capacitors, and inductors may be synthesized with the nonlinear dependent
source. Nonlinear resistors, capacitors and inductors are implemented with their linear counter-
parts by a change of variables implemented with the nonlinear dependent source. The following
subcircuit will implement a nonlinear capacitor:

108 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

Example: Non linear capacitor

.Subckt nlcap pos neg

* Bx: calculate f(input voltage)

Bx 1 0 v = f(v(pos,neqg))

* Cx: linear capacitance

tx201

* Vx: Ammeter to measure current into the capacitor
Vx 2 1 DC 0Volts

* Drive the current through Cx back into the circuit
Fx pos neg Vx 1

.ends

Example for f(v(pos,neg)):

Bx 1 0 V = v(pos,neg)x*v(pos,neqg)

Non-linear resistors or inductors may be described in a similar manner. An example for a
nonlinear resistor using this template is shown below.

Example: Non linear resistor

* use of "hertz’ variable in nonlinear resistor

x.param rbase=1k

* some tests

Bl 10 V = hertzxv(33)

B2 20V v(33)x*hertz

b3 3 0 V = 6.283e3/(hertz+6.283e3)x*v(33)

V133 0DCOACI1

**x*x Translate R1 10 0 R="1lk/sqrt(HERTZ)' to B source xxx
.Subckt nlres pos neg rb=rbase

* Bx: calculate f(input voltage)

Bx 1 0 v =-1/ {rb} / sqrt(HERTZ) * v(pos, neg)
* Rx: linear resistance

Rx 2 0 1

5.1. BXXXX: NONLINEAR DEPENDENT SOURCE (ASRC) 109

Example: Non linear resistor (continued)

* Vx: Ammeter to measure current into the resistor
Vx 2 1 DC OVolts

* Drive the current through Rx back into the circuit
Fx pos neg Vx 1

.ends

Xres 33 10 nlres rb=1k

*Rres 33 10 1k

Vres 10 0 DC 0O

.control

define check(a,b) vecmax(abs(a - b))

ac lin 10 100 1k

* some checks

print v(1) v(2) v(3)

if check(v(l), frequency) < le-12

echo "INFO: ok"

end

plot vres#branch

.endc

.end

5.1.2 Special B-Source Variables time, temper, hertz

The special variables time and temper are available in a transient analysis, reflecting the actual
simulation time and circuit temperature. temper returns the circuit temperature, given in degree
C (see 2.14). The variable hertz is available in an AC analysis. time is zero in the AC analysis,
hertz is zero during transient analysis. Using the variable hertz may cost some CPU time if
you have a large circuit, because for each frequency the operating point has to be determined
before calculating the AC response.

5.1.3 par(’expression’)
The B source syntax may also be used in output lines like .plot as algebraic expressions for
output (see Chapt.11.6.6).

5.1.4 Piecewise Linear Function: pwl

Both B source types may contain a piece-wise linear dependency of one network variable:

Example: pwl_current

Bdio 1 6 I = pwl(v(A), 0,0, 33,16m, 100,33m, 200,50m)

v(A) is the independent variable x. Each pair of values following describes the X,y functional
relation: In this example at node A voltage of OV the current of OA is generated - next pair gives
10mA flowing from ground to node 1 at 33V on node A and so forth.

110 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

The same is possible for voltage sources:

Example: pwl_voltage

Blimit b @ V = pwl(v(l), -4,0, -2,2, 2,4, 4,5, 6,5)

Monotony of the independent variable in the pwl definition is checked - non-monotonic x entries
will stop the program execution. v (1) may be replaced by a controlling current source, or it may
be replaced by time (for transient simulations). v(1) may also be replaced by an expression,
e.g. —2i(Vi,). The value pairs may also be parameters, and have to be predefined by a . param
statement. An example for the pwl function using all of these options is shown below.

B dcl: demonstrates usage of the pwl function in an b source (asrc) - m] *

v(3) — v(2)
— v(5)+0.5 v(4)-0.5

0.0

v-sweep

Figure 5.1: pwl (piece-wise linear) B source

5.1. BXXXX: NONLINEAR DEPENDENT SOURCE (ASRC) 111

Example: pwl function in B source

Demonstrates usage of the pwl function in an B source (ASRC)
* Also emulates the TABLE function with limits

.param x0=-4 y0=0
.param x1=-2 yl=2
.param x2=2 y2=-2
.param x3=4 y3=1
.param xx0=x0-1
.param xx3=x3+1

Vin ctrl 0 DC=0V
R1 ctrl 0 2

* no limits outside of the tabulated x values

* (continues linearily)

Btest2 2 0 I = pwl(v(ctrl),’'x0’,’'y0", 'x1",’yl","'x2","'y2",
+ 'x3",'y3")

* like TABLE function with limits:
Btest3 3 0 I = (v(ctrl) < 'x0") ? "y0' : (v(ctrl) < "x3")
+ ? pwl(v(l),'x0’,’'y0",'x1",'yl",'x2","'y2",'x3",'y3") : 'y3’

* more efficient and elegant TABLE function with limits
x(voltage controlled):

Btest4 4 0 I = pwl(v(ctrl),

+ 'xx0',’'y0", 'x0’,'y0’",

+ 'Xl’,'yl’,
+ 'x2','y2",

+ ’X3’,’y3,, ’XX3’,,y3’)
*

* more efficient and elegant TABLE function with limits
* (controlled by current):

Btest5 5 0 I = pwl(-2*xi(Vin),

+ 'xx0',’'y0’, 'x0",’'y0’,

+ 'x1','yl’",

+ 'x2','y2",

+ 'x3",'y3", 'xx3",'y3")

Rint2 2
Rint3 3
Rint4 4
Rint5 5
.control
dc Vin -6 6 0.2

plot v(2) v(3) v(4)-0.5 v(5)+0.5
.endc

01
01
01
01

.end

112 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

One characteristic to note: What happens when the controlling input (V(1) or —2 % i(V;;)) is
outside of the given limits, e.g. smaller than x0 or larger than x3 in the example given above?
New y values outside of the given range will be determined by adding x,y pairs calculated by
extending the slope of the output curve, e.g. with (y3 —y2)/(x3 —x2), as seen with v(2) from
example Btest2. If you want to limit the function, keeping the last y value, e.g. y3, you have
to add another point (x,y pair) with slightly extended x and y kept constant, e.g. x3 + 1,y3.

This gets important when we are for example using a behavioral resistor with pwl. In the
example below, RR1 quickly moves towards (and beyond) 0, which is unphysical and leads the
transient simulation to fail, because the current through RR1 is unbounded. RR2 with its limit
given by the 15.1ms,1 couple avoids such malfunctioning.

Example: pwl function in behavioral resistor

* pwl for behavioral R, transient sim

VUl 3 0 DC 9

RR1 3 @ R = pwl(time, 0,1, 7m,1, 8m,1.19, 14m,1.19, 15m,1)
RR2 3 @ R = pwl(time, 0,1, 7m,1, 8m,1.19, 14m,1.19, 15m,1,
+ 15.1m,1)

.tran 100u 20m 0O
.probe alli

.control

option noinit

run

display

set xbrushwidth=2

plot rrl#branch rr2#branch ylimit 7 17
.endc

.end

5.2 Exxxx: non-linear voltage source

5.2.1 VOL
General form:
EXXXXXXX n+ n- vol='expr’

Examples:

E41 4 0 vol = "V(3)*V(3)-0ffs’

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in Chapt.

5.2. EXXXX: NON-LINEAR VOLTAGE SOURCE 113

5.1. It may contain parameters (2.11.1) and the special variables time, temper, hertz (5.1.2).
"or { } may be used to delimit the function.

5.2.2 VALUE

Optional syntax:

EXXXXXXX n+ n- value={expr}

Examples:

E41 4 0 value = {V(3)*V(3)-0ffs}

The ’=’ sign is optional.

5.2.3 TABLE

Data may be entered from the listings of a data table similar to the pwl B-Source (5.1.4). Data
are grouped into x, y pairs. Expression may be an equation or an expression containing node
voltages or branch currents (in the form of i(vm)) and any other terms as given for the B source
and described in Chapt. 5.1. It may contain parameters (2.11.1). ’ or { } may be used to delimit
the function. Expression delivers the x-value, which is used to generate a corresponding y-value
according to the tabulated value pairs, using linear interpolation. If the x-value is below x0 , yO
is returned, above x2 y2 is returned (limiting function). The value pairs have to be real numbers,
parameters are not allowed.

Syntax for data entry from table:

Exxx nl n2 TABLE {expression} = (x0, y0) (x1, yl) (x2, y2)

Example (simple comparator):

ECMP 11 0@ TABLE {Vv(10,9)} = (-5mV, OV) (5mVv, 5V)

An ’=’ sign may follow the keyword TABLE.

5.24 POLY

see E-Source at Chapt. 5.5.

5.2.5 LAPLACE

Currently ngspice does not offer a direct E-Source element with the LAPLACE option. There
is however a XSPICE code model equivalent called s_xfer (see Chapt. 8.2.18), which you

114 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

may invoke manually. The XSPICE option has to be enabled (28.1). AC (11.3.1) and transient
analysis (11.3.10) is supported.

The following E-Source:

ELOPASS 4 0 LAPLACE {V(1)}
+ {5 % (s/100 + 1) / (s72/42000 + s/60 + 1)}

may be replaced by:

AELOPASS 1 int_4 filterl
.model filterl s_xfer(gain=5

+ num_coeff=[{1/100} 1]
+ den_coeff=[{1/42000} {1/60} 1]
+ int_ic=[0 0])

ELOPASS 4 0 int 4 0 1

where you have the voltage of node 1 as input, an intermediate output node int_4 and an E-
source as buffer to keep the name ‘ELOPASS’ available if further processing is required.

If the controlling expression is more complex than just a voltage node, you may add a B-Source
(5.1) for evaluating the expression before entering the A-device.

E-Source with complex controlling expression:
ELOPASS 4 0 LAPLACE {V(1)=*v(2)} {10 / (s/6800 + 1)}
may be replaced by:

BELOPASS int_1 0 V=V(1)x*v(2)
AELOPASS int_1 int_4 filterl
.model filterl s_xfer(gain=10

+ num_coeff=[1]
+ den_coeff=[{1/6800} 1]
+ int_ic=[0])

ELOPASS 4 0 int_ 4 0 1

5.2.6 FREQ

Currently ngspice does not offer a direct E-Source element with the FREQ option but it is
implemented by a XSPICE code model equivalent called xfer (see 8.2.19) that is automatically
invoked by rewriting the netlist. The XSPICE option has to be enabled (28.1) and only AC
(11.3.1) analysis is supported.

5.3. GXXXX: NON-LINEAR CURRENT SOURCE 115

This E-Source:

EXFER 1 0 FREQ {V(20,21)}= DB

+(1.000000e+07Hz, 1.633257e-07, -1.859873e+01)
+(1.025641e+08Hz, -4.165672e+00, -4.076855e+02)
+(2.000000e+08Hz, -2.798303e-05, -7.519027e+02)

produces a complex voltage determined by multiplying an input differential voltage (v(20, 21))
by a complex-valued PWL function of the simulation frequency (transfer function). The DB
keyword indicates that the second column is gain in db and the third is phase in degrees. Al-
ternative keywords are MAG (linear gain), RAD (phase in radians), DEG (phase in degrees,
already the default) or R_I (real and imaginary parts).

5.2.7 AND/OR/NAND/NOR

This form of E-source provides simple behavioural implementations of basic logic gates with
analog inputs and output. It is implemented by a XSPICE code model called multi_input_pwl
(see 8.2.10) that is automatically invoked by rewriting the netlist. The XSPICE option has to be
enabled (28.1).

This E-Source:
EAND outl out® and(2) inl 0 in2 0 (0.5, 0) (2.8, 3.3)

produces a differential output voltage determined by selecting the smallest of any number of
differential input voltages, and applying a PWL output function. Here “and(2)” determines the
logic function and number of PWL points: output is zero for minimum input voltage less than
0.5 and 3.3 for inputs greater than 2.8, with a linear ramp between. The other three functions
are similar: “or” selects the maximum input and “nand/nor” reverse the order of PWL points.
Only two points are supported.

An example circuit can be found at examples/digital/compare/adder_esource.cir.

5.3 Gxxxx: non-linear current source

5.3.1 CUR

General form:
GXXXXXXX n+ n- cur="expr' <m=val>
Examples:

G51 55 225 cur = 'V(3)*V(3)-0ffs’

116 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in Chapt.
5.1. It may contain parameters (2.11.1) and special variables (5.1.2). mis an optional multiplier
to the output current. val may be a numerical value or an expression according to 2.11.5
containing only references to other parameters (no node voltages or branch currents!), because
it is evaluated before the simulation commences.

5.3.2 VALUE

Optional syntax:

GXXXXXXX n+ n- value='expr’ <m=val>

Examples:

G51 55 225 value = 'V(3)xV(3)-0ffs’

The ’=’ sign is optional.

5.3.3 TABLE

A data entry by a tabulated listing is available with syntax similar to the E-Source (see Chapt.
5.2.3).

Syntax for data entry from table:

Gxxx nl n2 TABLE {expression} =
+ (x0, y0) (x1, yl) (x2, y2) <m=val>

Example (simple comparator with current output and voltage control):

GCMP 0 11 TABLE {V(10,9)} = (-5Mv, 0V) (5Mv, 5V)
R 11 0 1k

m is an optional multiplier to the output current. val may be a numerical value or an expression
according to 2.11.5 containing only references to other parameters (no node voltages or branch
currents!), because it is evaluated before the simulation commences. An ’=’ sign may follow
the keyword TABLE.

5.34 POLY

see E-Source at Chapt. 5.5.

5.3.5 LAPLACE

See E-Source, Chapt. 5.2.5 , for an equivalent code model replacement.

5.4. DEBUGGING A BEHAVIORAL SOURCE 117

53.6 FREQ

See E-Source, Chapt.5.2.6 , for an equivalent code model replacement.

5.3.7 Example

An example file is given below.

Example input file:

VCCS, VCVS, non-linear dependency
.param Vi=1

.param O0ffs="0.01«Vi’

* VCCS depending on V(3)

B21 intl 0 V = V(3)*V(3)

Gl 21 22 intl1 0 1

* measure current through VCCS
vm 22 0 dc 0

R21 21 0 1

* new VCCS depending on V(3)
G51 55 225 cur = 'V(3)*V(3)-0ffs’
* measure current through VCCS
vm5 225 0 dc 0

R51 5501

* VCVS depending on V(3)

B31 int2 0 V = V(3)*V(3)

El1 10 int2 01

RlL101

* new VCVS depending on V(3)
E41 4 0 vol = 'V(3)*V(3)-0ffs’
R4 401

* control voltage

V1 3 0 PWL(O 0 100u {Vi})
.control

unset askquit

tran 10n 100u uic

plot i(E1l) i(E41)

plot i(vm) i(vm5)

.endc

.end

5.4 Debugging a behavioral source

The B, E, G, sources and the behavioral R, C, L elements are powerful tools to set up user
defined models. Unfortunately debugging these models is not very comfortable.

118 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

Example input file with bug (log(-2)):

B source debugging

Vi101
V2 20 -2
E41 4 0 vol = "V(1)*log(V(2))’

.control
tran 1 1
.endc

.end

The input file given above results in an error message:
Error: -2 out of range for log

In this trivial example, the reason and location for the bug is obvious. However, if you have
several equations using behavioral sources, and several occurrences of the log function, then
debugging is nearly impossible.

However, if the variable ngdebug (see 13.7) is set (e.g. in file .spiceinit), a more distinctive
error message 1s issued that (after some closer investigation) will reveal the location and value
of the buggy parameter.

Detailed error message for input file with bug (log(-2)):

Error: -2 out of range for log
calling PTeval, tree =
(v0) * (log (v1))
d/ dve : log (vl)
d/ dvl : (v0) x ((0.434294) / (v1))
values: vard =1
varl = -2

If variable strict_errorhandling (see 13.7) is set, ngspice exits after this message. If not,
gmin and source stepping may be started, typically without success.

5.5 POLY Sources

Polynomial sources are only available when the XSPICE option (see Chapt. 28) is enabled.

5.5. POLY SOURCES 119

5.5.1 E voltage source, G current source

General form:
EXXXX N+ N- POLY(ND) NC1+ NC1- (NC2+ NC2-...) PO (P1l...)
Example:

ENONLIN 100 101 POLY(2) 3 0 4 0 0.0 13.6 0.2 0.005

POLY(ND) Specifies the number of dimensions of the polynomial. The number of pairs of
controlling nodes must be equal to the number of dimensions.

(N+) and (N-) nodes are output nodes. Positive current flows from the (+) node through the
source to the (-) node.

The <NC1+>and <NC1-> are in pairs and define a set of controlling voltages. A particular node
can appear more than once, and the output and controlling nodes need not be different.

The example yields a voltage output controlled by two input voltages v(3,0) and v(4,0). Four
polynomial coefficients are given. The equivalent function to generate the output is:

0 + 13.6 x v(3) + 0.2 x v(4) + 0.005 * v(3) * v(3)
Generally you will set the equation according to

POLY (1)

y pO + plxX1 + p2xX1xX1 + p3xXLxX1xX1 + ...
POLY(2) vy

po + plxX1 + p2*kX2 +

p3xX1xX1 + pdxX2xX1 + p5kX2%X2 +
p6xX1xX1*X1 + p7xX2xX1xX1 + p8xX2xX2*xX1 +
P9*xX2xX2%xX2 + ...

plxX1 + p2xX2 + p3xX3 +

p4*xX1xX1 + p5xX2xX1 + p6xX3*xX1 +

P7xX2*xX2 + p8xX2xX3 + p9xX3xX3 + ...

POLY(3) y = pO

+ + + + + 4+

where X1 is the voltage difference of the first input node pair, X2 of the second pair and so on.
Keeping track of all polynomial coefficient is rather tedious for large polynomials.

5.5.2 F voltage source, H current source

General form:
FXXXX N+ N- POLY(ND) V1 (V2 V3 ...) PO (P1...)
Example:

FNONLIN 100 101 POLY(2) VDD Vxx 0 0.0 13.6 0.2 0.005

120 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

POLY (ND) Specifies the number of dimensions of the polynomial. The number of controlling
sources must be equal to the number of dimensions.

(N+) and (N-) nodes are output nodes. Positive current flows from the (+) node through the
source to the (-) node.

V1 (V2 V3 ..) are the controlling voltage sources. Control variable is the current through these
sources.

PO (P1...) are the coefficients, as have been described in 5.5.1.

Chapter 6

Transmission Lines

Ngspice implements both the original SPICE3f5 transmission lines models and the one intro-
duced with KSPICE. The latter provide an improved transient analysis of lossy transmission
lines. Unlike SPICE models that use the state-based approach to simulate lossy transmission
lines, KSPICE simulates lossy transmission lines and coupled multiconductor line systems us-
ing the recursive convolution method. The impulse response of an arbitrary transfer function
can be determined by deriving a recursive convolution from the Pade approximations of the
function. We use this approach for simulating each transmission line’s characteristics and each
multiconductor line’s modal functions. This method of lossy transmission line simulation has
been proved to give a speedup of one to two orders of magnitude over SPICE3{5.

6.1 Lossless Transmission Lines
General form:

TXXXXXXX N1 N2 N3 N4 Z0=VALUE <TD=VALUE>
+ <F=FREQ <NL=NRMLEN>> <IC=V1, I1, V2, I2>

Examples:

T1 10 2 0 Z0=50 TD=10NS

nl and n2 are the nodes at port 1; n3 and n4 are the nodes at port 2. z0 is the characteristic
impedance. The length of the line may be expressed in either of two forms. The transmission
delay, td, may be specified directly (as td=10ns, for example). Alternatively, a frequency f may
be given, together with nl, the normalized electrical length of the transmission line with respect
to the wavelength in the line at the frequency f. The transmission delay then is calculated as
ta = nl/f.If a frequency is specified but nl is omitted, 0.25 is assumed (that is, the frequency
is assumed to be the quarter-wave frequency). Note that although both forms for expressing the
line length are indicated as optional, one of the two must be specified.

No .model line is required for this element.

Note that this element models only one propagating mode. If all four nodes are distinct in the ac-
tual circuit, then two modes may be excited. To simulate such a situation, two transmission-line

121

122 CHAPTER 6. TRANSMISSION LINES

elements are required. (see the example in Chapt. 17.7 for further clarification.) The (optional)
initial condition specification consists of the voltage and current at each of the transmission line
ports. Note that the initial conditions (if any) apply only if the UIC option is specified on the
. TRAN control line.

Note that a lossy transmission line (see below) with zero loss may be more accurate than the
lossless transmission line due to implementation details.

6.2 Lossy Transmission Lines

General form:
OXXXXXXX nl n2 n3 n4 mname
Examples:

023 1 6 2 6 LOSSYMOD
.model LOSSYMOD ltra rel=1 r=12.45 g=0 1=8.972e-9 c=0.468e-12
+len=16 steplimit compactrel=1.0e-3 compactabs=1.0e-14

OCONNECT 10 5 20 5 INTERCONNECT

This is a two-port convolution model for single conductor lossy transmission lines. nl and n2
are the nodes at port 1; n3 and n4 are the nodes at port 2. Note that a lossy transmission line
with zero loss may be more accurate than the lossless transmission line due to implementation
details.

6.2.1 Lossy Transmission Line Model (LTRA)

The uniform RLC/RC/LC/RG transmission line model (referred to as the LTRA model hence-
forth) models a uniform constant-parameter distributed transmission line. The RC and LC cases
may also be modeled using the URC and TRA models; however, the newer LTRA model is usu-
ally faster and more accurate than the others. The operation of the LTRA model is based on the
convolution of the transmission line’s impulse responses with its inputs (see [8]). The LTRA
model takes a number of parameters, some of which must be given and some of which are
optional.

6.2. LOSSY TRANSMISSION LINES 123

| Name \ Parameter | Units/Type | Default | Example |
R resistance/length Q/unit 0.0 0.2
L inductance/length H /ynit 0.0 9.13e-9
G conductance/length mhos /unit 0.0 0.0
C capacitance/length F Junit 0.0 3.65e-12
LEN length of line unit no default 1.0
REL breakpoint control arbitrary unit 1 0.5
ABS breakpoint control | 5
NOSTEPLIMIT don’t limit time-step to less flag not set set
than line delay
NO CONTROL don’t do complex time-step flag not set set
control
LININTERP use linear interpolation flag not set set
MIXEDINTERP use linear when quadratic flag not set set
seems bad
COMPACTREL special reltol for history RELTOL 1.0e-3
compaction
COMPACTABS special abstol for history ABSTOL | 1.0e-9
compaction
TRUNCNR use Newton-Raphson method flag not set set
for time-step control
TRUNCDONTCUT | don’t limit time-step to keep flag not set set
impulse-response errors low

The following types of lines have been implemented so far:

RLC (uniform transmission line with series loss only),

RC (uniform RC line),

LC (lossless transmission line),

RG (distributed series resistance and parallel conductance only).

Any other combination will yield erroneous results and should not be tried. The length LEN
of the line must be specified. NOSTEPLIMIT is a flag that will remove the default restriction
of limiting time-steps to less than the line delay in the RLC case. NO CONTROL is a flag that
prevents the default limiting of the time-step based on convolution error criteria in the RLC and
RC cases. This speeds up simulation but may in some cases reduce the accuracy of results.
LININTERP is a flag that, when specified, will use linear interpolation instead of the default
quadratic interpolation for calculating delayed signals. MIXEDINTERP is a flag that, when spec-
ified, uses a metric for judging whether quadratic interpolation is not applicable and if so uses
linear interpolation; otherwise it uses the default quadratic interpolation. TRUNCDONTCUT is a
flag that removes the default cutting of the time-step to limit errors in the actual calculation of
impulse-response related quantities. COMPACTREL and COMPACTABS are quantities that control
the compaction of the past history of values stored for convolution. Larger values of these lower
accuracy but usually increase simulation speed. These are to be used with the TRYTOCOMPACT
option, described in the .OPTIONS section. TRUNCNR is a flag that turns on the use of Newton-
Raphson iterations to determine an appropriate time-step in the time-step control routines. The

124 CHAPTER 6. TRANSMISSION LINES

default is a trial and error procedure by cutting the previous time-step in half. REL and ABS are
quantities that control the setting of breakpoints.

The option most worth experimenting with for increasing the speed of simulation is REL. The
default value of 1 is usually safe from the point of view of accuracy but occasionally increases
computation time. A value greater than 2 eliminates all breakpoints and may be worth trying
depending on the nature of the rest of the circuit, keeping in mind that it might not be safe from
the viewpoint of accuracy.

Breakpoints may usually be entirely eliminated if it is expected the circuit will not display
sharp discontinuities. Values between 0 and 1 are usually not required but may be used for
setting many breakpoints.

COMPACTREL may also be experimented with when the option TRYTOCOMPACT is specified in
a .OPTIONS card. The legal range is between O and 1. Larger values usually decrease the
accuracy of the simulation but in some cases improve speed. If TRYTOCOMPACT is not specified
on a .OPTIONS card, history compaction is not attempted and accuracy is high.

NO CONTROL, TRUNCDONTCUT and NOSTEPLIMIT also tend to increase speed at the expense of
accuracy.

6.3 Uniform Distributed RC Lines

General form:
UXXXXXXX nl n2 n3 mname l=len <n=lumps>
Examples:

Ul 12 0 URCMOD L=50U
.model URCMOD URC CPERL=100p RPERL=100k FMAX=10G

URC2 1 12 2 UMODL 1=1MIL N=6

nl and n2 are the two element nodes the RC line connects, while n3 is the node the capacitances
are connected to. mname is the model name, len is the length of the RC line in meters. Lumps,
if specified, is the number of lumped segments to use in modeling the RC line (see the model
description for the action taken if this parameter is omitted).

6.3.1 Uniform Distributed RC Model (URC)

The URC model is derived from a model proposed by L. Gertzberg in 1974. The model is
accomplished by a subcircuit type expansion of the URC line into a network of lumped RC
segments with internally generated nodes. The RC segments are in a geometric progression,
increasing toward the middle of the URC line, with K as a proportionality constant. The num-
ber of lumped segments used, if not specified for the URC line device, is determined by the
following formula:

6.4. KSPICE LOSSY TRANSMISSION LINES 125

Fnax 852012 | (1 ‘2

log | Finax L

N =

6.1
logK ©.h

The URC line is made up strictly of resistor and capacitor segments unless the ISPERL parame-
ter is given a nonzero value, in which case the capacitors are replaced with reverse biased diodes
with a zero-bias junction capacitance equivalent to the capacitance replaced, and with a satu-
ration current of ISPERL amps per meter of transmission line and an optional series resistance
equivalent to RSPERL ohms per meter.

Name Parameter \ Units \ Default \ Example \ Area ‘
K Propagation Constant - 1.5 1.2 -
FMAX | Maximum Frequency of interest Hz 1.0G | 6.5 Meg -
RPERL Resistance per unit length Q/m 1000 10 -
CPERL Capacitance per unit length F/m | 10e-15 Ip -
ISPERL | Saturation Current per unit length | A/m 0 - -
RSPERL Resistance per unit length Q/m 0 - -

6.4 KSPICE Lossy Transmission Lines

Unlike SPICE3, which uses the state-based approach to simulate lossy transmission lines,
KSPICE simulates lossy transmission lines and coupled multiconductor line systems using the
recursive convolution method. The impulse response of an arbitrary transfer function can be
determined by deriving a recursive convolution from the Pade approximations of the function.
ngspice is using this approach for simulating each transmission line’s characteristics and each
multiconductor line’s modal functions. This method of lossy transmission line simulation has
shown to give a sigificant speedup. Please note that the following two models will support only
transient simulation, no ac.

Additional Documentation Available:

* S. Lin and E. S. Kuh, ‘Pade Approximation Applied to Transient Simulation of Lossy
Coupled Transmission Lines,” Proc. IEEE Multi-Chip Module Conference, 1992, pp.
52-55.

* S. Lin, M. Marek-Sadowska, and E. S. Kuh, ‘SWEC: A StepWise Equivalent Conduc-
tance Timing Simulator for CMOS VLSI Circuits,” European Design Automation Conf.,
February 1991, pp. 142-148.

e S. Lin and E. S. Kuh, ‘Transient Simulation of Lossy Interconnect,” Proc. Design Au-
tomation Conference, Anaheim, CA, June 1992, pp. 81-86.

126 CHAPTER 6. TRANSMISSION LINES

6.4.1 Single Lossy Transmission Line (TXL)

General form:
YXXXXXXX N1 0 N2 O mname <LEN=LENGTH>
Example:

Y110 2 0 ymod LEN=2
.MODEL ymod txl R=12.45 L=8.972e-9 G=0 C=0.468e-12 length=16

nl and n2 are the nodes of the two ports. The optional instance parameter len is the length of
the line and may be expressed in multiples of [unit]. Typically unit is given in meters. Len will
override the model parameter length for the specific instance only.

The TXL model takes a number of parameters:

’ Name \ Parameter \ Units/Type \ Default \ Example ‘
R resistance/length Q/unit 0.0 0.2
L inductance/length H [unir 0.0 9.13e-9
G conductance/length mhos [unit 0.0 0.0
C capacitance/length F [unit 0.0 3.65e-12
LENGTH length of line unit no default 1.0

Model parameter length must be specified as a multiple of unit. Typically unit is given in [m].
For transient simulation only.

6.4.2 Coupled Multiconductor Line (CPL)

The CPL multiconductor line model is in theory similar to the RLGC model, but without fre-
quency dependent loss (neither skin effect nor frequency-dependent dielectric loss). Up to 8
coupled lines are supported in ngspice.

General form:
PXXXXXXX NI1 NIZ2...NIX GND1 NO1 NO2...NOX GND2 mname <LEN=LENGTH>
Example:

P1 inl in2 0 bl b2 0 PLINE

.model PLINE CPL length={Len}

+R=1 0 1

+L={L11} {L12} {L22}

+G=0 0 0

+C={C11} {C12} {C22}

.param Len=1 Rs=0

+ C11=9.143579E-11 C12=-9.78265E-12 (22=9.143578E-11
+ L11=3.83572E-7 L12=8.26253E-8 L22=3.83572E-7

6.4. KSPICE LOSSY TRANSMISSION LINES

nil ... nix are the nodes at port 1 with gndl; nol ... nox are the nodes at port 2 with gnd2. The
optional instance parameter Len is the length of the line and may be expressed in multiples of
[unit]. Typically unit is given in meters. Len will override the model parameter Length for the

specific instance only.

The CPL model takes a number of parameters:

| Name | Parameter | Units/Type | Default | Example |
R resistance/length Q/unit 0.0 0.2
L inductance/length H [unir 0.0 9.13e-9
G conductance/length mhos /unit 0.0 0.0
C capacitance/length F [unit 0.0 3.65e-12
LENGTH length of line unit no default 1.0

All RLGC parameters are given in Maxwell matrix form. For the R and G matrices the diagonal
elements must be specified, for L and C matrices the lower or upper triangular elements must
specified. The parameter LENGTH is a scalar and is mandatory. For transient simulation only.

128 CHAPTER 6. TRANSMISSION LINES

Chapter 7

Device Models

7.1 Instance lines and .model lines

Adding a device to the ngspice netlist as described in this chapter will require two lines: the
instance line and a .model line.

Instance line:

QXXXXXXX nodel node2 node3 modelname <instparl=val> <instpar2=val> <off>
.model line:

.model modelname modeltype mparl=val mpar2=val ...

The first letter of the instance line (e.g. Q for bipolar) will select the device (see 2.2), QXXXXXXX
denotes a unique name. Next there are the device nodes. modelname is a user-given reference
to a specific .model line. Instance parameters (specific to the device, often optional) may
follow.

The .model line adds a set of model parameters. After the .model token the modelname sets
the link to the devices calling this model parameter set. modeltype links the parameter set to
a specific model type, e.g. NPN or PNP for bipolar transistors (see 2.3 for model types available
in ngspice). Model parameters may follow.Their number may differ. If no parameters is given,
default parameters hardcoded into ngspice are selected. Complex device models may require
several hundred parameters. level and version parameters allow to access sub-categories of
a specific device model.

Example (integrated NMOS transistor, BSIM3):

M1 dnodel gnodel snodel bnodel mosnb3 L=0.35u W=2u
.model mosnb3 NMOS level=8 version=3.3.0 tox=6.5n nch=2.4el7 nsub=5el6 vth0=0.3

129

130 CHAPTER 7. DEVICE MODELS

7.2 Junction Diodes

General form:

DXXXXXXX n+ n- mname <area=val> <m=val> <pj=val> <off>
+ <ic=vd> <temp=val> <dtemp=val>
+ <lm=val> <wm=val> <lp=val> <wp=val>

Examples:

DBRIDGE 2 10 DIODE1l
DCLMP aa cc DMOD AREA=3.0 IC=0.2

The pn junction (diode) implemented in ngspice expands the one found in SPICE3f5. Perimeter
effects and high injection level have been introduced into the original model and temperature
dependence of some parameters has been added. n+ and n- are the positive (anode) and negative
(cathode) nodes, respectively. mname is the model name. Instance parameters may follow,
dedicated to only the diode described on the respective line. area is the area scale factor,
which may scale the saturation current given by the model parameters (and others, see table
below). pj (perim) is the perimeter scale factor, scaling the sidewall saturation current and its
associated capacitance. m is a multiplier of area and perimeter, and off indicates an (optional)
starting condition on the device for dc analysis. If the area factor is omitted, a value of 1.0 is
assumed. The (optional) initial condition specification using ic is intended for use with the uic
option on the .tran control line, when a transient analysis is desired starting from other than
the quiescent operating point. You should supply the initial voltage across the diode there. The
(optional) temp value is the temperature at which this device is to operate, and overrides the
temperature specification on the .option control line. The temperature of each instance can be
specified as an offset to the circuit temperature with the dtemp option.

To fulfill requirements of modern process design kits (PDK) the basic spice3 model was ex-
tended with the capability of modeling parasitic effects like sidewall junction currents and ca-
pacitances, tunnel currents and metal and polysilicon overlap capacitances. Latter effect can be
activated by LEVEL=3 model parameter or by setting element parameters lm, wm, 1p and wp. If
both are given, element parameters have priority.

With the (new in ngspice-39) OpenVAF/OSDI approach (see 9), all modern diode models, writ-
ten in Verilog-A, become available, like JUNCAP etc..

7.2.1 Diode Model (D)

Diode models may be described in the netlist input file (or an file included by .inc) according to
the following example:

7.2. JUNCTION DIODES 131

General form:
.model mname type(pnamel=pvall pname2=pval2 ...)
Examples:

.model DIODE1 D (bv=50 is=le-13 n=1.05)

with a user defined model name mname, and the model type D.

A basic model statement using only the internal default model parameters is

Basic model statement:

.model DMOD D

The dc characteristics of the diode are determined by the parameters IS and N. An ohmic resis-
tance, RS, is included. Charge storage effects are modeled by a transit time, TT, and a nonlinear
depletion layer capacitance that is determined by the parameters CJ0, V3, and M. The tempera-
ture dependence of the saturation current is defined by the parameters EG, the energy, and XTI,
the saturation current temperature exponent. The nominal temperature where these parameters
were measured is TNOM, which defaults to the circuit-wide value specified on the .options con-
trol line. Reverse breakdown is modeled by an exponential increase in the reverse diode current
and is determined by the parameters BV and IBV (both of which are positive numbers).

132 CHAPTER 7. DEVICE MODELS

Junction DC parameters

] Name Parameter \ Units \ Default \ Example \ Scale factor \
IS (JS) Saturation current A 1.0e-14 | 1.0e-16 | area
JSW (ISW) Sidewall saturation current A 0.0 1.0e-15 | perimeter
N Emission coefficient - 1 1.5
RS Ohmic resistance Q 0.0 100 1/area
BV (VB,VRB,VAR) | Reverse breakdown voltage % o 40
IBV (IB) Current at breakdown voltage A 1.0e-3 1.0e-4
NBV (NZ7) Breakdown Emission - N 1.2

Coefficient
IKF (IK) Forward knee current A 0.0 1.0e-3
IKR Reverse knee current A 0.0 1.0e-3
JTUN Tunneling saturation current A 0.0 area
JTUNSW Tunneling sidewall saturation A 0.0 perimeter
current
NTUN Tunneling emission - 30
coefficient
XTITUN Tunneling saturation current - 3
exponential
KEG EG correction factor for - 1.0
tunneling
ISR Recombination saturation A le-14 1pA area
current
NR Recombination current - 2 1.5
emission coefficient
Junction capacitance parameters
’ Name \ Parameter \ Units \ Default \ Example \ Scale factor ‘
CJO (CJO) Zero-bias junction F 0.0 2pF area
bottom-wall capacitance

CJP (CJSW) | Zero-bias junction sidewall F 0.0 ApF perimeter
capacitance

FC Coefficient for forward-bias - 0.5 -
depletion bottom-wall
capacitance formula

FCS Coefficient for forward-bias - 0.5 -
depletion sidewall
capacitance formula

M (MJ) Area junction grading - 0.5 0.5
coefficient

MISW Periphery junction grading - 0.33 0.5
coefficient

VI (PB) Junction potential Vv 1 0.6

PHP Periphery junction potential Vv 1 0.6

TT Transit-time sec 0 0.1ns

7.2. JUNCTION DIODES

Metal and Polysilicon Overlap Capacitances (level=3)

| Name | Parameter

| Units | Default | Example | Scale factor |

LM Length of metal capacitor m 0.0 4um SCALE
LP Length of polysilicon m 0.0 Sum SCALE
capacitor
WM | Width of metal capacitor m 0.0 2um SCALE
WP Width of polysilicon m 0.0 4um SCALE
capacitor
XOM | Thickness of the metal to m le-06 -
bulk oxide
XOI | Thickness of the polysilicon m le-06 -
to bulk oxide
XM Masking and etching effects m 0.0 -
in metal
XP Masking and etching effects m 0.0 -
in polysilicon
XW Masking and etching effects m 0.0 -

133

134 CHAPTER 7. DEVICE MODELS

Temperature effects

Name Parameter | Units | Default | Example |
1.11 Si
EG Activation energy eV 1.11 0.69 Sbd
0.67 Ge
GAP1 First bandgap correction eV | 7.02e-4
factor (TLEV=2)
GAP2 Secnd bandgap correction - 1108
factor (TLEV=2)
TNOM (TREF) | Parameter measurement °C 27 50
temperature
TRS1 (TRS) 1st order tempco for RS 1/oc 0.0 -
TRS2 2nd order tempco for RS 1/oc? 0.0 -
™1 Ist order tempco for MJ 1/°c 0.0 -
T™2 2nd order tempco for MJ 1/oc2 0.0 -
TTT1 Ist order tempco for TT 1/oc 0.0 -
TTT2 2nd order tempco for TT 1/oc? 0.0 -
. 3.0 pn
XTI Saturation current - 3.0 20 Spb d
temperature exponent
TLEV Diode temperature equation - 0
selector (0,1,2)
TLEVC Diode capac. temperature - 0
equation selector
CTA (CTC) Area junct. cap. temperature 1/oc 0.0 -
coefficient
CTP Perimeter junct. cap. 1/oc 0.0 -
temperature coefficient
TCV (TBV1) Breakdown voltage 1/oc 0.0 -
temperature coefficient

Noise modeling

| Name | Parameter | Units | Default | Example | Scale factor |
KF Flicker noise coefficient - 0
AF Flicker noise exponent - 1

7.2.2 Diode Equations

The junction diode is the basic semiconductor device and the simplest one in ngspice, but its
model is quite complex, even when not all the physical phenomena affecting a pn junction are
handled. The diode is modeled in three different regions:

» Forward bias: the anode is more positive than the cathode, the diode is ‘on’ and can
conduct large currents. To avoid convergence problems and unrealistic high current, it is
prudent to specify a series resistance to limit current with the RS model parameter.

7.2. JUNCTION DIODES 135

* Reverse bias: the cathode is more positive than the anode and the diode is ‘off’. A reverse
bias diode conducts a small leakage current.

* Breakdown: the breakdown region is modeled only if the BV model parameter is given.
When a diode enters breakdown the current increases exponentially (remember to limit
it); BV is a positive value.

Parameters Scaling

Model parameters are scaled using the unit-less parameters area and pj and the multiplier m as
depicted below:

AREA,;y = AREAm
Pl.sr=PIm

IS.r; = ISAREA,;r +ISW Pl,sf
IBV, ;s = IBVAREA,ff

IK,r; = IKAREA,ff

IKR,;; = IKRAREA, ;f

Clors = CIOAREA, ¢

CJP,;; = CIPPJ,sf

Diode DC, Transient and AC model equations

The diode model has certain dc currents for bottom and sidewall components. Exemplary here
is the equation for the bottom part:

ISeff(e]qvaDT_l)—f—VD'GMIN, ifvp > _31%
Ip =4 —IS.s[1 +(gv3q—1§f§§v)3)] +Vp-GMIN, if —BVeps < Vp < —3ML 1)
",

_ISeff(e NkT)+VD GMIN, if Vp < _Bveff

Two secondary effects are modeled if the appropriate parameters (see table Junction DC param-
eters) are given: Recombination current and bottom and sidewall tunnel current.

The breakdown region must be described with more depth since the breakdown is not modeled
physically. As written before, the breakdown modeling is based on two model parameters: the
‘nominal breakdown voltage’ BV and the current at the onset of breakdown IBV. For the diode
model to be consistent, the current value cannot be arbitrarily chosen, since the reverse bias and
breakdown regions must match. When the diode enters breakdown region from reverse bias,
the current is calculated using the formula':

Todwn = —ISepp(e M —1) (1.2)

The computed current is necessary to adjust the breakdown voltage making the two regions
match. The algorithm is a little bit convoluted and only a brief description is given here:

lif you look at the source code in file diotemp.c you will discover that the exponential relation is replaced
with a first order Taylor series expansion.

136 CHAPTER 7. DEVICE MODELS

Algorithm 7.1 Diode breakdown current calculation

if IBVeff < Ipgwn then
IBV, ¢ = Ipawn

BV,rr =BV
else .
BV.rr =BV —NV, ln(ﬁ)

Most real diodes shows a current increase that, at high current levels, does not follow the expo-
nential relationship given above. This behavior is due to high level of carriers injected into the
junction. High injection effects (as they are called) are modeled with IK and IKR.

—Ib - fyy > 3N
1y [Ip_ q
I s (7.3)
Deff — . .
17 I#I, otherwise.
1+ ”Ggff

Diode capacitance is divided into two different terms:

* Depletion capacitance

* Diffusion capacitance

Depletion capacitance is composed by two different contributes, one associated to the bottom
of the junction (bottom-wall depletion capacitance) and the other to the periphery (sidewall
depletion capacitance). The basic equations are

Cpiode = Cdiffusion + Cdepletion

Where the depletion capacitance is defined as:

Cdepletion = Cdepl,,w + Cdeplsw

The diffusion capacitance, due to the injected minority carriers, is modeled with the transit time
TT:

Ipesy
Caif fusion = TT———
dif fusion 8VD
The depletion capacitance is more complex to model, since the function used to approximate it
diverges when the diode voltage become greater than the junction built-in potential. To avoid
function divergence, the capacitance function is approximated with a linear extrapolation for
applied voltage greater than a fraction of the junction built-in potential.

Clopp(1—38)™™M if Vp < FC-VJ
Cdeply, = e Y (7.4)
eply c Jeffl FCOMNAMIE 0 e

(I_Fc)(1+MJ) ’

7.2. JUNCTION DIODES 137

CIP,pf(1 — pibs) ™MW, if Vp, < FCS - PHP
Caeply, =

1-FCS(1-+MJISW)+MISW- 725 . (7.5)
CJPesy (L _FCs)(1FM5W) PHP. otherwise.

Temperature dependence

The temperature affects many of the parameters in the equations above, and the following equa-
tions show how. One of the most significant parameters that varies with the temperature for a
semiconductor is the band-gap energy:

TNOM?2
EG,,, =1.16 —7.02¢* 7.6
nom ¢ TNOM+ 1108.0 (7.6)

T2
EG(T)=1.16—7.02¢* 7.7
G(T) ® TNOM+1108.0 7.7

The leakage current temperature’s dependence is:

logfactor

IS(T)=1Se N (7.8)
log factor
JSW(T)=JSWe N~ (7.9)
where ‘logfactor’ is defined as
EG EG
[tor = — XTI1 7.10
ogfactor = vasom Vi) T R (GRoM (7.10)
The contact potentials (bottom-wall an sidewall) temperature dependence is:
T EGuom EG(T)
VI(T)=VI] —Vi(T) |31 — 7.11
(1) =VilRom) ~ "){ "(TNom) TV, (TNOM) ~ V(T (7.11)
EGpom EG(T)
PHP(T) =PHP —Vi(T) |31 - 7.12
(T) (Tvom) ~ V!){ "(TNom) T V;(TNOM) ~ Vi(T) (7.12)
The depletion capacitances temperature dependence is:
VJ(T
CJ(T)=CJ [1 +MI(4.0e (T — TNOM) — % + 1)] (7.13)
PHP(T
CJSW(T) =CISW [1 +MISW (4.0 4(T — TNOM) — T;) 1)] (7.14)

The transit time temperature dependence is:

TT(T) = TT(1+TTT1(T — TNOM) + TTT2(T — TNOM)?) (7.15)

138 CHAPTER 7. DEVICE MODELS

The junction grading coefficient temperature dependence is:

MJ(T) =MI(1+TMI1(T — TNOM) + TM2(T — TNOM)?) (7.16)

The series resistance temperature dependence is:

RS(T) =RS(1 +TRS(T — TNOM) + TRS2(T — TNOM)?) (7.17)

Noise model

The diode has three noise contribution, one due to the presence of the parasitic resistance RS
and the other two (shot and flicker) due to the pn junction.

The thermal noise due to the parasitic resistance is:

5 4kTAf
ihg = 25 (7.18)
The shot and flicker noise contributions with model parameters KF and AF are
= KF - IF
i2 = 2qIpAf + D _Af (7.19)

f

Self Heating model

Ngspice diode model has implemented a simple self heating approach. A current equivalent
to the dissipated power is conducted to a RC parallel circuit. The connection node voltage is
so a thermal equivalent to the junction overtemperature. This temperature follows in a electro-
thermal feedback with appropriate change of the diode current and capacitance.

Compared to the standard diode we have a third node tj and a flag thermal on element line.
In the model description we have to set RTH® and CTHO® model parameter.

General form element usage:
DXXXXXXX n+ n- tj mname <off> <ic=vd> thermal
Example model:

.model DPWR D (bv=16 is=1le-10 n=1.03 rth0=50 cth0=1u)

7.2.3 Diode models available via OpenVAF/OSDI

With its integrated OSDI interface and the OpenVAF compiler (see chapter 9 for details),
ngspice makes available more Verilog-A compact diode models:

https://semimod.de/projects/
https://openvaf.semimod.de/

7.3. BJT 139

7.2.3.1 JUNCAP2 model

Initially developed by Philips research. A widely used diode model in integrated circuit design.
Works together with MOS models like PSP and as an alternative diode model for source/drain
junctions of BSIM4 models.

7.23.2 DIODE_CMC
The DIODE_CMC model includes following enhancement beyond JUNCAP2:

1. Series resistor

2. Diffusion cap with soft recovery

3. Breakdown voltage temperature coefficient
4. Noise

5. Min-max parameters for warning purposes

7.3 BJT

7.3.1 Bipolar Junction Transistors (BJTs)

General form:

QXXXXXXX nc nb ne <ns> <tj> mname <area=val> <areac=val>
+ <areab=val> <m=val> <off> <ic=vbe,vce> <temp=val>
+ <dtemp=val>

Examples:

023 10 24 13 QMOD IC=0.6, 5.0
Q50A 11 26 4 20 MOD1

nc, nb, and ne are the collector, base, and emitter nodes, respectively. ns is the (optional)
substrate node. When unspecified, ground is used. tj is the (optional) junction temperature
node, available in the VBIC model (see 7.3.4). mname is the model name, area, areab, areac
are the area factors (emitter, base and collector respectively), and off indicates an (optional)
initial condition on the device for the dc analysis. If the area factor is omitted, a value of 1.0 is
assumed.

The (optional) initial condition specification using ic=vbe,vce is intended for use with the
uic option on a .tran control line, when a transient analysis is desired to start from other
than the quiescent operating point. See the .ic control line description for a better way to set
transient initial conditions. The (optional) temp value is the temperature where this device is
to operate, and overrides the temperature specification on the .option control line. Using the
dtemp option one can specify the instance’s temperature relative to the circuit temperature.

140 CHAPTER 7. DEVICE MODELS

7.3.2 BJT Models (NPN/PNP)

Ngspice provides three different BJT device models, which are selected by the .model card.
.model QMOD1 PNP
.model QMOD3 NPN level=4

These are the minimal versions, using default parameters supplied by ngspice. Further optional
parameters listed in the table below may replace the ngspice default parameters. The LEVEL
keyword specifies the model to be used:

e LEVEL=1: This is the original SPICE BJT model, and it is the default model if the LEVEL
keyword is not specified on the .model line. By activating certain parameter a modified
version of the original SPICE BJT that models both vertical and lateral devices, includes
temperature corrections of collector, emitter and base resistors and allow modeling of
quasi-saturation effects.

* LEVEL=4: Advanced VBIC model (see 7.3.4 and http://www.designers-guide.org/VBIC/
for details)

e LEVEL=8: HICUM/L2 model (see 7.3.5 and the official website for details)

With the (new in ngspice-39) OpenVAF/OSDI approach (see 9), all modern bipolar models,
written in Verilog-A, become available, like VBIC, Mextram and HICUM.

7.3.3 Gummel-Poon Models

The bipolar junction transistor model in ngspice is an adaptation of the integral charge control
model of Gummel and Poon. This modified Gummel-Poon model extends the original model
to include several effects at high bias levels. The model automatically simplifies to the simpler
Ebers-Moll model when certain parameters are not specified. The parameter names used in the
modified Gummel-Poon model have been chosen to be more easily understood by the user, and
to reflect better both physical and circuit design thinking.

The dc model is defined by the parameters IS, BF, NF, ISE, IKF, and NE, which determine
the forward current gain characteristics, IS, BR, NR, ISC, IKR, and NC, which determine the
reverse current gain characteristics, and VAF and VAR, which determine the output conductance
for forward and reverse regions.

A more accurate model for transport current components is possible by specification of model
parameter IBE and IBC instead of IS.

Parameter NKF (NK) was introduced for more accurate high current beta rolloff modelling.

The BJT model has among the standard temperature parameters an extension compatible with
most foundry provided process design kits (see parameter table below TLEV).

The BJT model includes the substrate saturation current ISS. Three ohmic resistances RB, RC,
and RE are included, where RB can be high current dependent. Base charge storage is modeled
by forward and reverse transit times, TF and TR, where the forward transit time TF can be bias
dependent if desired. Nonlinear depletion layer capacitances are defined with CJE, VJE, and

http://www.designers-guide.org/VBIC/
https://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_intro.html

7.3. BJT 141

NJE for the B-E junction, CIC, V3IC, and NJC for the B-C junction and CJS, VJS, and M3JS for the
C-S (collector-substrate) junction.

The BJT model support a substrate capacitance that is connected to the device’s base or col-
lector, to model lateral or vertical devices dependent on the parameter SUBS. The temperature
dependence of the saturation currents, IS and ISS, is determined by the energy-gap, EG, and the
saturation current temperature exponent, XTI.

In the new model, additional base current temperature dependence is modeled by the beta tem-
perature exponent XTB. The values specified are assumed to have been measured at the tempera-
ture TNOM, which can be specified on the .options control line or overridden by a specification
on the .model line.

The BJT parameters used in the modified Gummel-Poon model are listed below. The parameter
names used in earlier versions of SPICE2 are still accepted.

Gummel-Poon BJT Parameters (incl. model extensions)

] Name ‘ Parameters ‘ Units ‘ Default ‘ Example | Scale factor
SUBS Substrate connection: 1 for vertical 1
geometry, -1 for lateral geometry
IS Transport saturation current A 1.0e-16 | 1.0e-15 area
IBE Base-Emitter saturation current A 0.0 1.0e-16 area
IBC Base-Collector saturation current A 0.0 1.0e-16 | areab,areac
ISS Reverse saturation current, A 0.0 1.0e-15 area

substrate-to-collector for vertical
device or substrate-to-base for

lateral
BF Ideal maximum forward beta. - 100 100
NF Forward current emission - 1.0 1
coefficient
VAF (VA) Forward Early voltage Vv o 200
IKF Corner for forward beta current A oo 0.01 area
roll-off
NKF(NK) High current Beta rolloff exponent - 0.5 0.9
ISE B-E leakage saturation current. A 0.0 le-13 area
NE B-E leakage emission coefficient - 1.5 2
BR Ideal maximum reverse beta - 1 0.1
NR Reverse current emission - 1 1
coefficient
VAR (VB) Reverse Early voltage Vv oo 200
IKR Corner for reverse beta high A) 0.01 area
current roll-off
ISC B-C leakage saturation current A 0.0 le-13 areab,areac

(scale is ‘areab’ for vertical devices
and ‘areac’ for lateral)

NC B-C leakage emission coefficient - 2 1.5

RB Zero bias base resistance Q 0 100 1/area

142 CHAPTER 7. DEVICE MODELS
IRB Current where base resistance falls A oo 0.1 area
halfway to its min value
RBM Minimum base resistance at high Q RB 10 1/area
currents
RE Emitter resistance Q 0 1 1/area
RC Collector resistance Q 0 10 1/area
CIE B-E zero-bias depletion F 0 2pF area
capacitance
VIJE (PE) B-E built-in potential Vv 0.75 0.6
MIJE (ME) B-E junction exponential factor - 0.33 0.33
TF Ideal forward transit time sec 0 0.1ns
XTF Coefficient for bias dependence of - 0
TF
VTF Voltage describing VBC Vv o
dependence of TF
ITF High-current parameter for effect A 0 - area
on TF
I
PTF Excess phase at freq=m Hz deg 0
cJC B-C zero-bias depletion F 2pF areab,areac
capacitance (scale is ‘areab’ for
vertical devices and ‘areac’ for
lateral)
VIJC (PC) B-C built-in potential |% 0.75 0.5
MIC B-C junction exponential factor - 0.33 0.5
XCJC Fraction of B-C depletion - 1
capacitance connected to internal
base node
TR Ideal reverse transit time sec 0 10ns
CJS Zero-bias collector-substrate F 0 2pF areab,areac
capacitance (scale is ‘areac’ for
vertical devices and ‘areab’ for
lateral)
VIS (PS) Substrate junction built-in potential Vv 0.75
MIJS (MS) Substrate junction exponential - 0 0.5
factor
XTB Forward and reverse beta - 0
temperature exponent
EG Energy gap for temperature effect eV 1.11
on IS
XTI Temperature exponent for effect on - 3
IS
KF Flicker-noise coefficient - 0
AF Flicker-noise exponent - 1
FC Coefficient for forward-bias - 0.5 0

depletion capacitance formula

7.3. BJT

143

TNOM (TREF) | Parameter measurement °C 27 50
temperature
TLEV BJT temperature equation selector - 0
TLEVC BJT capac. temperature equation - 0
selector
TRE1 Ist order temperature coefficient 1/oc 0.0 le-3
for RE
TRE2 2nd order temperature coefficient 1/oc? 0.0 le-5
for RE
TRC1 Ist order temperature coefficient 1/oc 0.0 le-3
for RC
TRC2 2nd order temperature coefficient 1/oc? 0.0 le-5
for RC
TRB1 Ist order temperature coefficient 1/oc 0.0 le-3
for RB
TRB2 2nd order temperature coefficient 1/oc? 0.0 le-5
for RB
TRBMI1 Ist order temperature coefficient 1/oc 0.0 le-3
for RBM
TRBM2 2nd order temperature coefficient 1/oc? 0.0 le-5
for RBM
TBF1 Ist order temperature coefficient 1/°c 0.0 le-3
for BF
TBF2 2nd order temperature coefficient 1/oc? 0.0 le-5
for BF
TBR1 Ist order temperature coefficient 1/oc 0.0 le-3
for BR
TBR2 2nd order temperature coefficient 1/oc? 0.0 le-5
for BR
TIKF1 I'st order temperature coefficient 1/oc 0.0 le-3
for IKF
TIKF2 2nd order temperature coefficient 1/oc2 0.0 le-5
for IKF
TIKR1 I'st order temperature coefficient 1/oc 0.0 le-3
for IKR
TIKR2 2nd order temperature coefficient 1/oc2 0.0 le-5
for IKR
TIRB1 Ist order temperature coefficient 1/°c 0.0 le-3
for IRB
TIRB2 2nd order temperature coefficient 1/°c2 0.0 le-5
for IRB
TNC1 Ist order temperature coefficient 1/oc 0.0 le-3
for NC
TNC2 2nd order temperature coefficient 1/°c? 0.0 le-5

for NC

144 CHAPTER 7. DEVICE MODELS

TNE1 Ist order temperature coefficient 1/oc 0.0 le-3
for NE
TNE2 2nd order temperature coefficient 1/oc? 0.0 le-5
for NE
TNF1 Ist order temperature coefficient 1/oc 0.0 le-3
for NF
TNF2 2nd order temperature coefficient 1/oc? 0.0 le-5
for NF
TNRI1 Ist order temperature coefficient 1/oc 0.0 le-3
for IKF
TNR2 2nd order temperature coefficient 1/oc? 0.0 le-5
for IKF
TVAF1 Ist order temperature coefficient 1/oc 0.0 le-3
for VAF
TVAF2 2nd order temperature coefficient 1/oc? 0.0 le-5
for VAF
TVARI Ist order temperature coefficient 1/oc 0.0 le-3
for VAR
TVAR2 2nd order temperature coefficient 1/oc? 0.0 le-5
for VAR
CTC I'st order temperature coefficient 1/oc 0.0 le-3
for CJC
CTE I'st order temperature coefficient 1/oc 0.0 le-3
for CJE
CTS I'st order temperature coefficient 1/oc 0.0 le-3
for CJS
TVIC I'st order temperature coefficient 1/oc? 0.0 le-5
for VIC
TVIE Ist order temperature coefficient 1/°c 0.0 le-3
for VIE
TITF1 Ist order temperature coefficient 1/oc 0.0 le-3
for ITF
TITF2 2nd order temperature coefficient 1/°c2 0.0 le-5
for ITF
TTF1 Ist order temperature coefficient 1/oc 0.0 le-3
for TF
TTF2 2nd order temperature coefficient 1/°c? 0.0 le-5
for TF
TTR1 I'st order temperature coefficient 1/oc 0.0 le-3
for TR
TTR2 2nd order temperature coefficient 1/oc? 0.0 le-5
for TR
TMIE1 Ist order temperature coefficient 1/oc 0.0 le-3
for MJE
TMIE2 2nd order temperature coefficient 1/oc? 0.0 le-5
for MJE

7.3. BJT 145

T™IC1 Ist order temperature coefficient 1/oc 0.0 le-3
for MJC

T™™IC2 2nd order temperature coefficient 1/oc? 0.0 le-5
for MJC

Quasi-Saturation Model extension

By defining parameter RCO, VO, GAMMA and QCO an extension of the Gummel-Poon model will
be switched on to model bipolar junction transistors that exhibit quasi-saturation effects. A
description can be found in [24].

] Name ‘ Parameters ‘ Units ‘ Default ‘ Example ‘ Scale factor ‘
RCO Epitaxial region resistance Q 0 0.45 1/area
VO Carrier mobility knee voltage \" 10 4.16
GAMMA | Epitaxial region doping factor — le-11 1.0e-15
QCO Epitaxial region charge factor C 0.0 34E-11
VG Energy gap QS temp. depend. \" 1.206 1.2
CN Temperature exponent of RCI 2.42 NPN 2.2 PNP
D Temperature exponent of VO .87 NPN .52 PNP

The Collector current output characteristic shows a special moderate transition in the BJT satu-
ration region, see figure 7.1. Furthermore DC current gain and the unity gain frequency fT falls
sharply.

5.0
40 I —— - —
i f I
20 f
10
0.0% _ _

00 05 10 15 20 25 30 35 40 45 50

V-Sweep A

Figure 7.1: Output characteristic with and w/o Quasi-Saturation

146 CHAPTER 7. DEVICE MODELS

7.3.4 VBIC Model

The VBIC model is an extended development of the Standard Gummel-Poon (SGP) model with
the focus of integrated bipolar transistors in today’s modern semiconductor technologies. With
the implemented modified Quasi-Saturation model from Kull and Nagel it is also possible to
model the special output characteristic of discrete switching and RF transistors. It is a improved
alternative to the SGP model for silicon, SiGe and III-V HBT devices.

VBIC Capabilities compared to Standard Gummel-Poon Model:

* Integrated substrate transistor for parasitic devices in integrated processes

Weak avalanche and base-emitter breakdown model

Improved Early effect modeling

Physical separation of Ic and Ib

Improved depletion capacitance model

Improved temperature modeling

Self-heating modeling

VBIC self-heating model

This model has implemented a simple 1-pole thermal network to cover self-heating effects.
That means that the power dissipation is gathered in all branches of the device model and is
conducted as an equivalent current Ith into one model node dt. This node has a resistor Rth
and capacitor Cth parallel connection to ground. Because the resistor plays the role of the
thermal resistance from junction to case the arising voltage at node dt is equivalent the BJT
junctions temperature. The model realisizes that this temperature rise leads to deviations for
internal resistors, currents and capacitors values, calculated by temperature update equations.
This process is included into the ngspice iteration schema for all analyses and is controlled by
the model parameter SELFT (SELFT=0: self heating calculation is off (default value), SELFT=1:
self-heating is on). In addition the model parameter RTH has to be given.

The simple thermal network of the VBIC model is shown in Fig. 7.2.

dt

Cth
@ It —
Rt

thermaFnetwork

Figure 7.2: VBIC thermal network

7.3. BJT

147

How to instantiate the bipolar VBIC model (only minimal version) with self-heating:

vC
vb
ve
VS
Q1

nw ® T O
T o0 o o o

C

(ol SN o)

0
e s dt modl area=1

.model modl npn Level=4 selft=1 rth=100

Of course it is possible to connect an more accurate thermal network to the node dt. The
following example is showing a simplified thermal network covering the thermal resistances
and capacitances of junction-case and case-ambient transitions induced by a heat-sink.

Ql c b e s dt mod2

.model mod2 npn Level=9 selft=1 rth=20
X1 dt tamb junction-ambient

VTamb tamb 0 30

.subckt junction-ambient jct amb

rjic jct 1 0.4

CCs
rcs
CSsa
rsa

10 5m
120.1
2 0 30m
2 amb 1.3

.ends

7.3.5 HICUM level 2 Model

The physics-based HIgh-CUrrent Model (HICUM) Level2 (L2) has been a standard compact
model for bipolar junction transistors and heterojunction bipolar transistors (HBTs) for many
years. The model has been shown to be applicable to many process generations of SiGe HBTs
and also to InP HBTs, including high-speed and high-voltage device designs. The implemented
version in Ngspice is HICUML2/2.4 and can be activated by BJT model parameter level=8.

HICUML2 captures most to all known physical effects relevant in HBTs, in example:

¢ substrate transistor

¢ avalanche effect

* physics based transfer current model

* self-heating

* accurate modeling of the temperature dependence

* excess phase between base and collector current

148 CHAPTER 7. DEVICE MODELS

Figure 7.3: The equivalent circuit of HICUM/L?2 without the self-heating, NQS and noise cor-
relation networks.

Note that the noise correlation network is not implemented in Ngspice. More information re-
garding the model and its parameters can be found on the website.

The equivalent circuit of the model is shown in fig. 7.3. The model is employed in many PDKs
for state-of-the-art SiGe and InP HBTs and is actively developed at TU Dresden.

The HICUM model exposes the following nodes to the user:
C(ollector) B(ase) E(mitter) S(ubstrate) T(emperature)

By connecting the T and S nodes of the model to other circuit elements, the thermal and sub-
strate network can be modified by the user. Note that both self-heating and the avalanche effect
may cause convergency issues if the operating region is too extreme.

The HICUM/L2 model can be initiated like this example:

vc c 00
vbb0O1
ve e 0 0
Vs s 0 0
Ql ¢ b e s dt modl area=1

.model modl npn Level=8

Self-heating is activated by model parameters FLSH, RTH and connecting T node of the device
instance. FLSH = 1 will only consider main thermal contributions of IC and IB, FLSH = 2 include
all power dissipations of the transistor.

7.3.6 BJT models available via OpenVAF/OSDI

With its integrated OSDI interface and the OpenVAF compiler (see chapter 9 for details),
ngspice makes available more Verilog-A compact BJT models:

https://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_intro.html
https://semimod.de/projects/
https://openvaf.semimod.de/

7.4. JFETS 149

7.3.6.1 HICUM level 0

HICUM/LO is being developed to reduce the simulation and design time especially for larger
circuits. It addresses, compared to the SPICE Gummel-Poon model, modern BJT and HBT
technologies by including more accurate formulations for important physical effects such as
forward transit time, base-collector punch-through and collector impact ionization.

7.3.6.2 HICUM level 2

HICUMY/L2 stands for HIgh CUrrent Model and targets the design of bipolar transistor circuits
at high-frequencies and high-current densities using a wide range of Si, SiGe or III-V based
process technologies. The compact model that contains accurate formulations of all known
physical effects, enables geometry scaling and statistical modeling, and covers a wide tempera-
ture, operating and frequency range.

7.3.6.3 MEXTRAM 504 and 505

MEXTRAM is an advanced compact model for the description of bipolar transistors. It con-
tains many features that the widely-used Gummel-Poon model lacks. Mextram can be used
for advanced processes like double-poly or even SiGe transistors and for high-voltage power
devices.

74 JFETSs

7.4.1 Junction Field-Effect Transistors (JFETS)
General form:

IXXXXXXX nd ng ns mname <area> <off> <ic=vds,vgs> <temp=t>
Examples:

Jl1 7 2 3 JM1 OFF

nd, ng, and ns are the drain, gate, and source nodes, respectively. mname is the model name,
area is the area factor, and off indicates an (optional) initial condition on the device for dc
analysis. If the area factor is omitted, a value of 1.0 is assumed. The (optional) initial condition
specification, using ic=VDS, VGS is intended for use with the uic option on the .TRAN control
line, when a transient analysis is desired starting from other than the quiescent operating point.
See the . ic control line for a better way to set initial conditions. The (optional) temp value is
the temperature where this device is to operate, and overrides the temperature specification on
the .option control line.

150 CHAPTER 7. DEVICE MODELS

7.4.2 JFET Models (NJEF/PJF)

7.4.3 Basic model statement

.model JM1 NJF level=1

.model JMOD2 PJF level=2

7.4.4 JFET level 1 model with Parker Skellern modification

The JFET level 1 model is derived from the FET model of Shichman and Hodges. The dc
characteristics are defined by the parameters VTO0 and BETA, which determine the variation of
drain current with gate voltage, LAMBDA, which determines the output conductance, and IS, the
saturation current of the two gate junctions. Two ohmic resistances, RD and RS, are included.

vgst =vgs—VTO (7.20)
B, = BETA (1 + LAMBDA vds) (7.21)
1-B
b = 7.22
Ja¢ =g _vto (722)
vds - GMIN, ifvgst <0
Iprain= < Bpvds (vds (bfacvds — B) vgst (2B+3bfac (vgst —vds))) +vds- GMIN, if vgst > vds
B, vest? (B+vgst bfac) +vds- GMIN, if vgst < vds
(7.23)

Note that in Spice3f and later, the fitting parameter B has been added by Parker and Skellern.
For details, see [9]. If parameter B is set to 1 equation above simplifies to

vds - GMIN, ifvgst <0
Iprain = { Bpvds (2vgst —vds) +vds-GMIN, if vgst > vds (7.24)
B, vegst? +vds- GMIN, if vgst < vds

Charge storage is modeled by nonlinear depletion layer capacitances for both gate junctions,
which vary as the —1/2 power of junction voltage and are defined by the parameters CGS, CGD,
and PB.

7.4. JEETS 151

| Name | Parameter | Units | Default | Example | Scaling factor |
VTO Threshold voltage Vrg |% -2.0 -2.0
BETA Transconductance parameter (f3) Aly" | 1.0e-4 1.0e-3 area
LAMBDA Channel-length modulation 1y 0 1.0e-4
parameter (1)
RD Drain ohmic resistance Q 0 100 1/area
RS Source ohmic resistance Q 0 100 1/area
CGS Zero-bias G-S junction capacitance F 0 SpF area
Cos
CGD Zero-bias G-D junction F 0 1pF area
capacitance Cgg
PB Gate junction potential Vv 1 0.6
IS Gate saturation current Ig A 1.0e-14 | 1.0e-14 area
B Doping tail parameter - 1 1.1
KF Flicker noise coefficient - 0
AF Flicker noise exponent - 1
NLEV Noise equation selector - 1 3
GDSNOI Channel noise coefficient for 1.0 2.0
nlev=3
FC Coefficient for forward-bias 0.5
depletion capacitance formula
TNOM Parameter measurement °C 27 50
temperature
TCV Threshold voltage temperature 1/oc 0.0 0.01
coefficient
VTOTC Threshold voltage temperature 1/oc 0.0 -2.5m
coefficient (alternative model)
BEX Mobility temperature exponent - 0.0 1.1
BETATCE Mobility temperature exponent %/°c 0.0 -0.5
(alternative model)
XTI Gate saturation current temperature - 3.0
coefficient
EG Bandgap voltage 1.11

Additional to the standard thermal and flicker noise model an alternative thermal channel noise
model is implemented and is selectable by setting NLEV parameter to 3. This leads to a correct
channel thermal noise description in the linear region.

(1+a+a?)

2
Snoise = 3 4kT - BETA -V gst GDSNOI (7.25)

with

" vgs—VTO’

1——Yds_— ifvgs—VTO > vds
o — . (7.26)

else

JFET level 1 model has an alternative temperature model for main parameter VT0 and BETA:

152 CHAPTER 7. DEVICE MODELS

VTOTC is given:

VTO(Temp) =VTO+VTOTC * (Temp—TNOM) (7.27)
* VTOTC not given:
VTO(Temp) =VTO —TCV x(Temp —TNOM) (7.28)
e BETATCE is given:
BETA(Temp) = BETA % 1.01BETATCE«(Temp—TNOM) (7.29)

BETATCE not given:

(7.30)

Temp \ BEX
TNOM

BETA(Temp) = BETA x (

7.4.5 JFET level 2 Parker Skellern model

The level 2 model is an improvement to level 1. Details are available in a pdf originating from
Macquarie University. Some important items are

* The description maintains strict continuity in its high-order derivatives, which is essential
for prediction of distortion and intermodulation.

* Frequency dependence of output conductance and transconductance is described as a
function of bias.

* Both drain-gate and source-gate potentials modulate the pinch-off potential, which is con-
sistent with S-parameter and pulsed-bias measurements.

 Self-heating varies with frequency.

» Extreme operating regions - subthreshold, forward gate bias, controlled resistance, and
breakdown regions - are included.

* Parameters provide independent fitting to all operating regions. It is not necessary to
compromise one region in favor of another.

* Strict drain-source symmetry is maintained. The transition during drain-source potential
reversal is smooth and continuous.

The model equations are described in this pdf document and in [19].

https://ngspice.sourceforge.io/external-documents/models/psfet.pdf
https://ngspice.sourceforge.io/external-documents/models/psfet.pdf

7.4. JFETS

Name | Description | Units | Default
ID Device IDText Text PF1
ACGAM Capacitance modulation - 0
BETA Linear-region transconductance scale - 1074
CGD Zero-bias gate-source capacitance F 0
CGS Zero-bias gate-drain capacitance F 0
DELTA Thermal reduction coefficient 1/w 0
FC Forward bias capacitance parameter - 0.5
HFETA | High-frequency VGS feedback parameter - 0
HFE1 HFGAM modulation by VGD 1y 0
HFE2 HFGAM modulation by VGS v 0
HFGAM | High-frequency VGD feedback parameter - 0
HFG1 HFGAM modulation by VSG v 0
HFG2 HFGAM modulation by VDG A% 0
IBD Gate-junction breakdown current A 0
IS Gate-junction saturation current A 10~
LFGAM Low-frequency feedback parameter - 0
LFGI LFGAM modulation by VSG v 0
LFG2 LFGAM modulation by VDG 1y 0
MVST Subthreshold modulation 1y 0
N Gate-junction ideality factor - 1
p Linear-region power-law exponent - 2
Q Saturated-region power-law exponent - 2
RS Source ohmic resistance Q 0
RD Drain ohmic resistance Q 0
TAUD Relaxation time for thermal reduction s 0
TAUG Relaxation time for gamma feedback s 0
VBD Gate-junction breakdown potential Vv 1
VBI Gate-junction potential Vv 1
VST Subthreshold potential \% 0
VTO Threshold voltage Vv -2.0
XC Capacitance pinch-off reduction factor - 0
XI Saturation-knee potential factor - 1000
Z Knee transition parameter - 0.5
RG Gate ohmic resistance Q 0
LG Gate inductance H 0
LS Source inductance H 0
LD Drain inductance H 0
CDSS Fixed Drain-source capacitance F 0
AFAC Gate-width scale factor - 1
NFING Number of gate fingers scale factor - 1
TNOM | Nominal Temperature (Not implemented) K 300 K
TEMP Temperature K 300 K

153

154 CHAPTER 7. DEVICE MODELS

7.5 MESFETSs

7.5.1 MESFET devices

General form:
ZXXXXXXX ND NG NS MNAME <AREA> <OFF> <IC=VDS, VGS>
Examples:

Z1 7 2 3 ZM1 OFF

7.5.2 MESFET Models (NMF/PMF)

.model ZM1 NMF level=1
.model MZMOD PMF level=4

These model statements will use the default parameters (level 1 listed below).

7.5.3 Model by Statz e.a.

The MESFET model level 1 is derived from the GaAs FET model of Statz et al. as described in
[11]. The dc characteristics are defined by the parameters VTO, B, and BETA, which determine
the variation of drain current with gate voltage, ALPHA, which determines saturation voltage,
and LAMBDA, which determines the output conductance. The formula are given by:

B(Ve—Vro)? Vi) 3
W%[“(l_“%) 1“”‘/‘“) for0<Var <4

I = (7.31)

B(Ves—Vro)? 3
1+B(gvgs—T\?To) (1+AVa) for Vs > 3

Two ohmic resistances, RD and RS, are included. Charge storage is modeled by total gate charge
as a function of gate-drain and gate-source voltages and is defined by the parameters CGS, CGD,
and PB.

7.5. MESFETS 155

| Name | Parameter | Units | Default | Example | Area |
VTO Pinch-off voltage Vv -2.0 -2.0
BETA Transconductance parameter Alv2 | 1.0e-4 1.0e-3 g
B Doping tail extending parameter 1y 0.3 0.3 *
ALPHA Saturation voltage parameter 1y 2 2 *
LAMBDA | Channel-length modulation parameter v 0 1.0e-4
RD Drain ohmic resistance Q 0 100 *
RS Source ohmic resistance Q 0 100 *
CGS Zero-bias G-S junction capacitance F 0 SpF *
CGD Zero-bias G-D junction capacitance F 0 1pF *
PB Gate junction potential Vv 1 0.6
KF Flicker noise coefficient - 0
AF Flicker noise exponent - 1
FC Coefficient for forward-bias depletion - 0.5
capacitance formula

Device instance:
z1 2 3 0 mesmod area=1.4
Model:

.model mesmod nmf level=1 rd=46 rs=46 vt0=-1.3
+ lambda=0.03 alpha=3 beta=1l.4e-3

7.5.4 Model by Ytterdal e.a.

level 2 (and levels 3,4) Copyright 1993: T. Ytterdal, K. Lee, M. Shur and T. A. Fjeldly
to be written

M. Shur, T.A. Fjeldly, T. Ytterdal, K. Lee, "Unified GaAs MESFET Model for Circuit Simula-
tion", Int. Journal of High Speed Electronics, vol. 3, no. 2, pp. 201-233, 1992

7.5.5 hfetl and hfet2

hfet1 level 5
Heterostructure Field Effect Transistor model as described in section 4.6 of the book

K. Lee, M. Shur, T. A. Fjeldly and T. Ytterdal, Semiconductor Device Modeling for VLSI,
1993, Prentice Hall, New Jersey.

Model parameters, equivalent circuit diagrams and device equations are also described in the
AIM-Spice reference manual, section Device Models A.

hfet2 level6

The HFET level 2 model is a simplified version of the level 1 model. The model is optimized
for speed and is suitable for simulation of digital circuits. To increase the speed, some of the
features included in the level 1 model is not implemented for the level 2 model.

http://www.aimspice.com/downloads/aimspiceref.2020.100.pdf

156 CHAPTER 7. DEVICE MODELS

7.6 MOSFETsSs

Ngspice supports all the original MOSFET models present in SPICE3f5 and almost all the
newer ones that have been published and made open-source. Both bulk and SOI (Silicon on
Insulator) models are available. When compiled with the cider option, ngspice implements
the four terminals numerical model that can be used to simulate a MOSFET (please refer to
numerical modeling documentation for additional information and examples).

7.6.1 MOSFET devices

General form:

MXXXXXXX nd ng ns nb mname <m=val> <l=val> <w=val>
+ <ad=val> <as=val> <pd=val> <ps=val> <nrd=val>
+ <nrs=val> <off> <ic=vds, vgs, vbs> <temp=t>

Examples:

M1 24 2 0 20 TYPE1
M31 2 17 6 10 MOSN L=5U W=2U
M1 2 9 3 0 MOSP L=10U W=5U AD=100P AS=100P PD=40U PS=40U

Note the suffixes in the example: the suffix ‘u’ specifies microns (le-6 m) and ‘p’ sq-microns
(le-12 m?).

The instance card for MOS devices starts with the letter 'M’. nd, ng, ns, and nb are the drain,
gate, source, and bulk (substrate) nodes, respectively. mname is the model name and m is the
multiplicity parameter, which simulates ‘m’ paralleled devices. All MOS models support the ‘m’
multiplier parameter. Instance parameters 1 and w, channel length and width respectively, are
expressed in meters. The drain and source diffusion areas are ad and as, in square meters (m?).

If any of 1, w, ad, or as are not specified, default values are used. The use of defaults simplifies
input file preparation, as well as the editing required if device geometries are to be changed. pd
and ps are the perimeters of the drain and source junctions, in meters. nrd and nrs designate
the equivalent number of squares of the drain and source diffusions; these values multiply the
sheet resistance rsh specified on the .model control line for an accurate representation of the
parasitic series drain and source resistance of each transistor. pd and ps default to 0.0 while nrd
and nrs to 1.0. off indicates an (optional) initial condition on the device for dc analysis. The
(optional) initial condition specification using ic=vds, vgs, vbs is intended for use with the uic
option on the .tran control line, when a transient analysis is desired starting from other than
the quiescent operating point. See the . ic control line for a better and more convenient way to
specify transient initial conditions. The (optional) temp value is the temperature at which this
device is to operate, and overrides the temperature specification on the .option control line.

The temperature specification is ONLY valid for level 1, 2, 3, and 6 MOSFETs, not for level 4
or 5 (BSIM) devices.

BSIM3 (v3.2 and v3.3.0), BSIM4 (v4.7 and v4.8) and BSIMSOI models are also supporting the
instance parameter delvto and mulu® for local mismatch and NBTI (negative bias temperature
instability) modeling:

7.6. MOSFETS 157

| Name \ Parameter | Units | Default | Example |
delvto (delvt0) Threshold voltage shift |% 0.0 0.07
mulu0 Low-field mobility multiplier (UO) - 1.0 0.9

7.6.2 MOSFET models (NMOS/PMOS)

MOSFET models are the central part of ngspice, probably because they are the most widely
used devices in the electronics world. Ngspice provides all the MOSFETs implemented in the
original Spice3f and adds several models developed by UC Berkeley’s Device Group and other
independent groups.

Each model is invoked with a .model card. A minimal version is:
.model MOSN NMOS level=8 version=3.3.0

The model name MOSN corresponds to the model name in the instance card (see 7.6.1). Param-
eter NMOS selects an n-channel device, PMOS would point to a p-channel transistor. The LEVEL
and VERSION parameters select the specific model. Further model parameters are optional and
replace ngspice default values. Due to the large number of parameters (more than 100 for mod-
ern models), model cards may be stored in extra files and loaded into the netlist by the .include
(2.8) command. Model cards are specific for a an IC manufacturing process and are typically
provided by the IC foundry. Some generic parameter sets, not linked to a specific process, are
made available by the model developers, e.g. UC Berkeley’s Device Group for BSIM4 and
BSIMSOIL.

Ngspice provides several MOSFET device models, which differ in the formulation of the I-V
characteristic, and are of varying complexity. Models available are listed in table 7.3. Current
models for IC design are BSIM3 (7.6.3.3, down to channel length of 0.25 um), BSIM4 (7.6.3 .4,
below 0.25 um), BSIMSOI (7.6.4, silicon-on-insulator devices), HiSIM2 and HiSIM_HYV (7.6.6,
surface potential models for standard and high voltage/high power MOS devices).

With the (new in ngspice-39) OpenVAF/OSDI approach (see 9), all modern MOS models,
written in Verilog-A, become available, like BSIMBULK, BSIM-CMG and BSIM-IMG, PSP,
HiSim etc..

7.6.2.1 MOS Level 1

This model is also known as the ‘Shichman-Hodges” model. This is the first model written and
the one often described in the introductory textbooks for electronics. This model is applicable
only to long channel devices. The use of Meyer’s model for the C-V part makes it non charge
conserving.

7.6.2.2 MOS Level 2

This model tries to overcome the limitations of the Level 1 model addressing several short-
channel effects, like velocity saturation. The implementation of this model is complicated and
this leads to many convergence problems. C-V calculations can be done with the original Meyer
model (non charge conserving).

http://www-device.eecs.berkeley.edu/bsim/
http://www-device.eecs.berkeley.edu/bsim/

CHAPTER 7. DEVICE MODELS

158

"(SJOPOIN-VA 995) IISTH ‘dSd “OINI-INISE ‘DIND-INISE "' TNFINISE :sejdurexy

o[qe[reae are JyAUdQ yim poriduiod pue y-SO[LI9A UT U)LIM S[OpOW SOIA [[99BJIIUI [(ISO S YIA €695 1 1dSO
Suneay J[os ‘uonernies isenb ‘UOISIOAUL Yeam wed) 201ds3u SO Tomod SOINdA
SOINQ'] 10J UOISIOA d3eI[OA YSIH BUWIYSOIH | 0TV T AH WIS | €L
BWIYSOITH 087 CINIS'™H | 89
uoydureyinog ¢IoS DVLS | 09
AoryIog adiosed | LS
A3poxrog adrosed | 9¢
Koo g adiosed | s¢
Koporprog €8P YINISH | ¥S ‘v
Kopaytog 0Ly LAYINISH | ¥S ‘P
Korayrog (2% 9AYINISH | ¥S VI
9P0J UOISIOA DN Aopydg | Sv-0v SAYINISH | #S ‘P1
Kopped | 1'€v 10Std | 8S ‘01
[€1] ut paqLdsag Aoovjteg 0¢e CINISH | 6 °8
9pOd UOISIOA NNJA Ao[aieg | v'C€-T€ CEACINISE | 61 °8
nosadod ueqiog £q SuUOISuIXd Aarayreg I'¢ TACINISH | 6V °8
AidsoIn uely AQ SUOISUIIXD Asrorprog 0¢ 0ACNISY | 61 8
adsaqrp uery 6SON | 6
[Z] ur paqusa(q Aarayreg 9SON | 9
[G] ur paquIdsa(q Aorayreg JANISH | S
[€] ur paqudsag Aopexrog TINISE | ¥
([1] 99s) [opow [eordwa-Twas v KoroIeg ¢SO | €
[Z] u1 paqusaq Ao[Iog - UBUIYOI]-9A0ID) ZSON | T
‘[opow onieapenb [edIsse[O 9y} ST SIY L, Aarag - SO3poH-urwWyOIyS ISON | 1

sajoN | saouaray

13dopaad | uoIsip |

PPOIN |

aureN | A9 |

Table 7.3: MOSFET model summary

https://openvaf.semimod.de/
https://github.com/dwarning/VA-Models

7.6. MOSFETS 159

7.6.2.3 MOS Level 3

This is a semi-empirical model derived from the Level 2 model. In the 80s this model has often
been used for digital design and, over the years, has proved to be robust. A discontinuity in the
model with respect to the KAPPA parameter has been detected (see [10]). The supplied fix has
been implemented in Spice3f2 and later. Since this fix may affect parameter fitting, the option
badmos3 may be set to use the old implementation (see the section on simulation variables and
the .options line). Ngspice level 3 implementation takes into account length and width mask
adjustments (XL and XW) and device width narrowing due to diffusion (WD).

7.6.2.4 MOS Level 6

This model is described in [26]. The model can express the current characteristics of short-
channel MOSFETs at least down to 0.25 um channel-length, GaAs FET, and resistance inserted
MOSFETs. The model evaluation time is about 1/3 of the evaluation time of the SPICE3 mos
level 3 model. The model also enables analytical treatments of circuits in short-channel region
and makes up for a missing link between a complicated MOSFET current characteristics and
circuit behaviors in the deep submicron region.

7.6.2.5 Notes on Level 1-6 models

The dc characteristics of the level 1 through level 3 MOSFETs are defined by the model param-
eters VTO, KP, LAMBDA, PHI and GAMMA. These parameters are computed by ngspice if process
parameters (NSUB, TOX, ...) are given, but users specified values always override. VTO is pos-
itive (negative) for enhancement mode and negative (positive) for depletion mode N-channel
(P-channel) devices.

Charge storage is modeled by three constant capacitors, C6S0, CGDO and CGBO, which represent
overlap capacitances, by the nonlinear thin-oxide capacitance that is distributed among the gate,
source, drain, and bulk regions, and by the nonlinear depletion-layer capacitances for both
substrate junctions divided into bottom and periphery, which vary as the MJ and MISW power
of junction voltage respectively, and are determined by the parameters CBD, CBS, CJ, CISW, MJ,
MJISW and PB.

Charge storage effects are modeled by the piecewise linear voltages-dependent capacitance
model proposed by Meyer. The thin-oxide charge-storage effects are treated slightly differ-
ent for the level 1 model. These voltage-dependent capacitances are included only if TOX is
specified in the input description and they are represented using Meyer’s formulation.

There is some overlap among the parameters describing the junctions, e.g. the reverse current
can be input either as IS (in A) or as JS (in A/m?). Whereas the first is an absolute value the
second is multiplied by ad and as to give the reverse current of the drain and source junctions
respectively.

This methodology has been chosen since there is no sense in relating always junction charac-
teristics with ad and as entered on the device line; the areas can be defaulted. The same idea
applies also to the zero-bias junction capacitances CBD and CBS (in F) on one hand, and CJ (in
F/m?) on the other.

160 CHAPTER 7. DEVICE MODELS

The parasitic drain and source series resistance can be expressed as either RD and RS (in ohms)
or RSH (in ohms/sq.), the latter being multiplied by the number of squares nrd and nrs input on

the device line.

MOS level 1, 2, 3 and 6 parameters

Name Parameter Units Default Example
LEVEL Model index - 1
VTO Zero-bias threshold voltage Vv 0.0 1.0
(V7o)
KP Transconductance Aly? 2.0e-5 3.1e-5
parameter
GAMMA Bulk threshold parameter VV 0.0 0.37
PHI Surface potential (U) 1% 0.6 0.65
LAMBDA | Channel length modulation 1y 0.0 0.02
(MOST1 and MOS2 only)
4)

RD Drain ohmic resistance Q 0.0 1.0
RS Source ohmic resistance Q 0.0 1.0
CBD Zero-bias B-D junction F 0.0 20fF

capacitance
CBS Zero-bias B-S junction F 0.0 20fF
capacitance
IS Bulk junction saturation A 1.0e-14 1.0e-15
current (Ig)
PB Bulk junction potential Vv 0.8 0.87
CGSO Gate-source overlap F/m 0.0 4.0e-11
capacitance per meter
channel width
CGDO Gate-drain overlap F/m 0.0 4.0e-11
capacitance per meter
channel width
CGBO Gate-bulk overlap F/m 0.0 2.0e-11
capacitance per meter
channel width
RSH Drain and source diffusion /0 0.0 10
sheet resistance
cl Zero-bias bulk junction F/m? 0.0 2.0e-4
bottom cap. per sq-meter of
junction area
MIJ Bulk junction bottom - 0.5 0.5
grading coeff.
CISW Zero-bias bulk junction F/m 0.0 1.0e-9
sidewall cap. per meter of
junction perimeter

161

7.6. MOSFETS
Name Parameter Units Default Example
MISW Bulk junction sidewall - 050 (levell)
. 0.33 (level2,3)
grading coeff.
IS Bulk junction saturation
current
TOX Oxide thickness m 1.0e-7 1.0e-7
NSUB Substrate doping cm™3 0.0 4.0el5
NSS Surface state density cm™—? 0.0 1.0e10
NFS Fast surface state density cm—? 0.0 1.0e10
TPG Type of gate material: +1 - 1.0
opp. to substrate, -1 same as
substrate, 0 Al gate
XJ Metallurgical junction depth m 0.0 IM
LD Lateral diffusion m 0.0 0.8M
Uo Surface mobility cm® [y .sec 600 700
UCRIT Critical field for mobility V/em 1.0e4 1.0e4
degradation (MOS2 only)
UEXP Critical field exponent in - 0.0 0.1
mobility degradation
(MOS?2 only)
UTRA Transverse field coeff. - 0.0 0.3
(mobility) (deleted for
MOS2)
VMAX Maximum drift velocity of mfs 0.0 5.0e4
carriers
NEFF Total channel-charge (fixed - 1.0 5.0
and mobile) coefficient
(MOS2 only)
KF Flicker noise coefficient - 0.0 1.0e-26
AF Flicker noise exponent - 1.0 1.2
NLEV Noise equation selector - | 3
GDSNOI Channel noise coefficient 1.0 2.0
for nlev=3
FC Coefficient for forward-bias - 0.5
depletion capacitance
formula
DELTA Width effect on threshold - 0.0 1.0
voltage (MOS2 and MOS3)
THETA Mobility modulation VA% 0.0 0.1
(MOS3 only)
ETA Static feedback (MOS3 - 0.0 1.0
only)
KAPPA Saturation field factor - 0.2 0.5
(MOS3 only)
TNOM Parameter measurement °C 27 50
temperature

162 CHAPTER 7. DEVICE MODELS

7.6.2.6 MOS Level 9

Documentation is not available..

7.6.3 BSIM Models

Ngspice implements many of the BSIM models developed by Berkeley’s BSIM group. BSIM
stands for Berkeley Short-Channel IGFET Model and groups a class of models that is con-
tinuously updated. BSIM3 (7.6.3.3) and BSIM4 (7.6.3.4) are industry standards for CMOS
processes down to 0.15 um (BSIM3) and below (BSIM4), are very stable and are supported by
model parameter sets from foundries all over the world. BSIM1 and BSIM?2 are obsolete today.

In general, all parameters of BSIM models are obtained from process characterization, in par-
ticular level 4 and level 5 (BSIM1 and BSIM2) parameters can be generated automatically.
J. Pierret [4] describes a means of generating a ‘process’ file, and the program ngproc2mod
provided with ngspice converts this file into a sequence of BSIM1 .model lines suitable for
inclusion in an ngspice input file.

Parameters marked below with an * in the 1/w column also have corresponding parameters with
a length and width dependency. For example, VFB is the basic parameter with units of Volts,
and LVFB and WVFB also exist and have units of Volt-meter.

The formula

P
pepyt bty Hw (7.32)

Leffective Weffective

is used to evaluate the parameter for the actual device specified with

Leffective = Linput —DL (7.33)

Wettective = input — DW (7.34)

Note that unlike the other models in ngspice, the BSIM models are designed for use with a
process characterization system that provides all the parameters, thus there are no defaults for
the parameters, and leaving one out is considered an error. For an example set of parameters and
the format of a process file, see the SPICE2 implementation notes [3]. For more information on
BSIM2, see reference [5]. BSIM3 (7.6.3.3) and BSIM4 (7.6.3.4) represent state of the art for
submicron and deep submicron IC design.

7.6.3.1 BSIMI1 model (level 4)

BSIM1 model (the first is a long series) is an empirical model. Developers placed less empha-
sis on device physics and based the model on parametrical polynomial equations to model the
various physical effects. This approach pays in terms of circuit simulation behavior but the ac-
curacy degrades in the submicron region. A known problem of this model is the negative output
conductance and the convergence problems, both related to poor behavior of the polynomial
equations.

http://bsim.berkeley.edu/

7.6. MOSFETS

BSIM1 (level 4) parameters

Name Parameter Units | I/w
VFB Flat-band voltage Vv *
PHI Surface inversion potential Vv *

K1 Body effect coefficient VvV *

K2 Drain/source depletion charge-sharing - *
coefficient

ETA Zero-bias drain-induced barrier-lowering - *
coefficient

MUZ Zero-bias mobility cm’ [y .sec

DL Shortening of channel um

DwW Narrowing of channel um

U0 Zero-bias transverse-field mobility degradation 1y *
coefficient

Ul Zero-bias velocity saturation coefficient uly *

X2MZ Sens. of mobility to substrate bias at v=0 cm®[y2.sec | ¥

X2E Sens. of drain-induced barrier lowering effect 1y *
to substrate bias
X3E Sens. of drain-induced barrier lowering effect 1y *
to drain bias at V;;, =V,

X2U0 Sens. of transverse field mobility degradation 1/y2 *

effect to substrate bias

X2U1 Sens. of velocity saturation effect to substrate pumfy? g

bias

MUS | Mobility at zero substrate bias and at Vi, = Vyy sz/stec

X2MS | Sens. of mobility to substrate bias at Vs = Vg | e’ /v2sec | *

X3MS Sens. of mobility to drain bias at V;3 = V4 sz/stec *

X3Ul | Sens. of velocity saturation effect on drain bias | um/v? *

at Vds=Vvdd
TOX Gate oxide thickness um

TEMP | Temperature where parameters were measured °C
VDD Measurement bias range Vv

CGDO Gate-drain overlap capacitance per meter F/m

channel width

CGSO Gate-source overlap capacitance per meter F/m

channel width

CGBO Gate-bulk overlap capacitance per meter F/m

channel length
XPART Gate-oxide capacitance-charge model flag -
NO Zero-bias subthreshold slope coefficient - *
NB Sens. of subthreshold slope to substrate bias - *
ND Sens. of subthreshold slope to drain bias - *
RSH Drain and source diffusion sheet resistance /0
JS Source drain junction current density Alm?
PB Built in potential of source drain junction Vv
MJ Grading coefficient of source drain junction -

163

164 CHAPTER 7. DEVICE MODELS

Name Parameter Units | I/w
PBSW Built in potential of source, drain junction Vv

sidewall
MJSW Grading coefficient of source drain junction -

sidewall

cl Source drain junction capacitance per unit area F/m?
CIJISW | source drain junction sidewall capacitance per F/m
unit length

WDF Source drain junction default width m
DELL Source drain junction length reduction m

XPART=0 selects a 40/60 drain/source charge partition in saturation, while XPART=1 selects a
0/100 drain/source charge partition. nd, ng, and ns are the drain, gate, and source nodes, re-
spectively. mname is the model name, area is the area factor, and off indicates an (optional)
initial condition on the device for dc analysis. If the area factor is omitted, a value of 1.0 is
assumed. The (optional) initial condition specification, using ic=vds,vgs is intended for use
with the uic option on the . tran control line, when a transient analysis is desired starting from
other than the quiescent operating point. See the .ic control line for a better way to set initial
conditions.

7.6.3.2 BSIM2 model (level 5)

This model contains many improvements over BSIM1 and is suitable for analog simulation.
Nevertheless, even BSIM?2 breaks transistor operation into several distinct regions and this leads
to discontinuities in the first derivative in C-V and I-V characteristics that can cause numerical
problems during simulation.

7.6.3.3 BSIM3 model (levels 8, 49)

BSIM3 solves the numerical problems of previous models with the introduction of smoothing
functions. It adopts a single equation to describe device characteristics in the operating regions.
This approach eliminates the discontinuities in the I-V and C-V characteristics. The origi-
nal model, BSIM3 evolved through three versions: BSIM3v1, BSIM3v2 and BSIM3v3. Both
BSIM3v1 and BSIM3v2 had suffered from many mathematical problems and were replaced by
BSIM3v3. The latter is the only surviving release and has itself a long revision history.

The following table summarizes the story of this model and their available ngspice versions:

| Release | Date | Notes | Version flag |
BSIM3v3.0 | 10/30/1995 3.0
BSIM3v3.1 | 12/09/1996 3.1
BSIM3v3.2 | 06/16/1998 Revisions available: BSIM3v3.2.2, 3.2,3.2.2,
BSIM3v3.2.3, and BSIM3v3.2.4 3.2.3,3.24

Parallel processing with OpenMP is available
for BSIM3v3.2.4.

BSIM3v3.3 | 07/29/2005 | Parallel processing with OpenMP is available 3.3.0

for this model.

http://bsim.berkeley.edu/models/bsim3/

7.6. MOSFETS 165

BSIM3v2 and 3v3 models have been proven for accurate use in 0.18 pum technologies. The
model is publicly available as source code form from University of California, Berkeley.

A detailed description is given in the user’s manual available from here .

We recommend that you use only the most recent BSIM3 models (version 3.3.0), because it
contains corrections to all known bugs. To achieve that, change the version parameter in your
modelcard files to

VERSION = 3.3.0.
If no version number is given in the .model card, this (newest) version is selected as the default.

A basic model card using only the intrinsic default parameters may look like

.model nl nmos level=49 version=3.3.0
.model pl pmos level=49 version=3.3.0

Unfortunately, due to historical reasons, these purely intrinsic parameters do not describe real-
istic devices. A better minimum model configuration, roughly describing 0.35um transistors,
is

.model nl nmos level=49 version=3.3.0 tox=10n nch=1el7 nsub=5el6
.model pl pmos level=49 version=3.3.0 tox=10n nch=1el7 nsub=5e16

BSIM3v3.2.4 supports the extra model parameter LMLT on channel length scaling and is still
used by many foundries today.

The older BSIM3 models will not be supported, they are made available for reference only.

7.6.3.4 BSIM4 model (levels 14, 54)

This is the newest class of the BSIM family and introduces noise modeling and extrinsic para-
sitics. BSIM4, as the extension of BSIM3 model, addresses the MOSFET physical effects into
sub-100nm regime. It is a physics-based, accurate, scalable, robust and predictive MOSFET
SPICE model for circuit simulation and CMOS technology development. It is developed by
the BSIM Research Group in the Department of Electrical Engineering and Computer Sciences
(EECS) at the University of California, Berkeley (see BSIM4 home page). BSIM4 has a long
revision history. The models offered by ngspice are summarized below.

| Release | Date | Notes | Version flag |
BSIM4.5.0 | 07/29/2005 Hx 45.0
BSIM4.6.5 | 22/09/2009 w* 4.6.5
BSIM4.7.0 | 04/08/2011 wk 4.7
BSIM4.8.3 | 19/05/2025 w 4.8

*%) Parallel processing using OpenMP support is available for this model.

Details of any revision are to be found in the Berkeley user’s manuals, a pdf download of the
most recent edition is to be found here.

We recommend that you use only the most recent BSIM4 model (version 4.8.3), because it
contains corrections to all known bugs. To achieve that, change the version parameter in your
modelcard files to

http://bsim.berkeley.edu/BSIM4/BSIM3/ftpv330.zip
http://ngspice.sourceforge.net/external-documents/models/bsim330_manual.pdf
http://bsim.berkeley.edu/models/bsim4/
http://ngspice.sourceforge.net/external-documents/models/BSIM480_Manual.pdf

166 CHAPTER 7. DEVICE MODELS

VERSION = 4.8.3

If no version number is given in the .model card, this (newest) version is selected as the default.
The older models will typically not be supported, they are made available for reference only.
All version parameter starting with 4.8 will use the code of the recent version.

The basic model card, using only the intrinsic default parameters, already delivers reasonable
device characteristics.

.model nl nmos level=54 version=4.8.3
.model pl pmos level=54 version=4.8.3

7.6.4 BSIMSOI models (levels 10, 58, 55, 56, 57)

BSIMSOI is a SPICE compact model for SOI (Silicon-On-Insulator) circuit design, created by
University of California at Berkeley. This model is formulated on top of the BSIM3 framework.
It shares the same basic equations with the bulk model so that the physical nature and smooth-
ness of BSIM3v3 are retained. Four models are supported in ngspice, those based on BSIM3
and modeling fully depleted (FD, level 55), partially depleted (PD, level 57) and both (DD, level
56), as well as the modern BSIMSOI version 4 model (levels 10, 58). Detailed descriptions are
beyond the scope of this manual, but see e.g. BSIMSOIv4.4 User Manual for a very extensive
description of the recent model version. OpenMP support is available for levels 10, 58, version
4.4.

7.6.5 SOI3 model (level 60)

see literature citation [18] for a description.

7.6.6 HiSIM models of the University of Hiroshima

There are two model implementations available - see also HiSIM Research Center:

1. HiSIM?2 model: Surface-Potential-Based MOSFET Model for Circuit Simulation version
2.8.0 - level 68 (see link to HiSIM2 for source code and manual).

2. HiSIM_HV model: Surface-Potential-Based HV/LD-MOSFET Model for Circuit Sim-
ulation version 1.2.4 and 2.2.0 - level 73 (see link to HiSIM_HYV for source code and
manual).

7.6.7 MOS models available via OpenVAF/OSDI

With its integrated OSDI interface and the OpenVAF compiler (see chapter 9 for details),
ngspice makes available several Verilog-A compact MOS models. To obtain the sources you
may visit the github repository VA-Models which assembles most of the publicly available
Verilog-A compact models. To just name a few models:

http://bsim.berkeley.edu/models/bsimsoi/
http://ngspice.sourceforge.net/external-documents/models/BSIMSOIv4.4_UsersManual.pdf
https://www.hisim.hiroshima-u.ac.jp/index.php?id=87
http://home.hiroshima-u.ac.jp/usdl/HiSIM2/HiSIM_2.5.1_Release_20110407.zip
http://home.hiroshima-u.ac.jp/usdl/HiSIM_HV/C-Code/HiSIM_HV_1.2.2_Release_20110629.zip
https://semimod.de/projects/
https://openvaf.semimod.de/
https://github.com/dwarning/VA-Models

7.7. POWER MOSFET MODEL (VDMOS) 167

7.6.7.1 PSP model

The PSP model is a compact MOSFET model intended for digital, analog and RF-design, which
is jointly developed by NXP Semiconductors Research (formerly part of Philips), different uni-
versities and CEA-Leti.

PSP is a surface-potential based MOS Model, containing all relevant physical effects to model
present-day and upcoming deep-submicron bulk CMOS technologies:

mobility reduction
* velocity saturation drain induced barrier lowering DIBL

e gate current

lateral doping gradient effects

STI stress

The source/drain junction model, c.q. the JUNCAP2 model, is fully integrated in PSP. Detailes
information and the most recent version of the model documentation are available on the the
CEA-Leti web site, see also the PSP Summary.

7.6.7.2 BSIM-BULK model

BSIM-BULK is the successor to BSIM4, with high accuracy compared to measured data in all
regions of operation. It features model symmetry valued for analog and RF applications.

7.6.7.3 BSIM-CMG model

BSIM-CMG (Common Multi-Gate) is a compact model for the class of common multi-gate
FETs, namely FinFETs, Nanowire and Gate-All-Around transistors.

7.6.7.4 EKV3

EKV3 Due to CMOS scaling, ICs operate more and more in moderate and weak inversion.
Evolution of CMOS device performance — from planar bulk to double-gate and FinFET. The
model is a charge-based compact model — close to physics and design. Modularity allows high-
frequency application with special attention to analog/RF IC design requirements.

7.7 Power MOSFET model (VDMOS)

The VDMOS model is a relativly simple power MOS model with 3 terminals drain, gate and
source. Its current equations are partly based on a modified MOS1 model. The gate-source
capacitance is set to a constant value by model parameter CGS. The drain-source capacitance
is evaluated from parameters CGDMAX, CGDMIN, and A. The drain-source capacitance is that of
a parallel pn diode and calculated by €30, FC, and M. Leakage and breakdown are modeled by

https://www.cea.fr/cea-tech/leti/pspsupport/CurrentRelease
https://www.cea.fr/cea-tech/leti/pspsupport/Documents/psp103p8_summary.pdf
http://bsim.berkeley.edu/models/bsimbulk/
http://bsim.berkeley.edu/models/bsimcmg/
https://github.com/MatBucher/ekv3model

168 CHAPTER 7. DEVICE MODELS

the parallel pn diodes as well, using is and other parameters. A subthreshold current model is
available, using a single parameter KSUBTHRES. Quasi-saturation is modelled with parameters
RQ and VQ. MTRIODE may be used here as well.

The thermal network of the VDMOS model is shown in Fig. 7.4.

D
L
Tj
Rd Rdio Rthj
Tcase
Power Rthca
'y DBODY Itl(D |
b /\ N VTemp
= k
ckt->Tem
v P
L |
Ith = Ids*Vds + Id*Vrd + Idiod*Vdiod
S

Figure 7.4: VDMOS model including thermal network

This model does not have a level parameter. It is invoked by the VDMOS token preceding the
parameters on the .model line. P-channel or n-channel are selected by the model parameter
PCHAN and NCHAN. If no flag is given, n-channel is the default. Standard MOS instance
parameters W and L are not acknowledged because they are no design parameters and are not
provided by the device manufacturers.

The following ’parameters’ in the .model line are no model parameters, but serve informa-
tion purposes for the user: mfg=..., Vds=..., Ron=..., and Qg=... They are ignored by
ngspice.

General form:

MXXXXXXX nd ng ns mname <m=val> <temp=t> <dtemp=t>
.model mname VDMOS <Pchan> <parameters>

Example:

M1 24 2 0 IXTH48P20P

.MODEL IXTH48P20P VDMOS Pchan Vds=200 VT0=-4 KP=10 Lambda=5m
+ Mtriode=0.3 Ksubthres=120m Rs=10m Rd=20m Rds=200e6

+ Cgdmax=6000p Cgdmin=100p A=0.25 Cgs=5000p Cjo=9000p

+ Is=2e-6 Rb=20m BV=200 IBV=250e-6 NBV=4 TT=260e-9

VDMOS instance parameters

7.7. POWER MOSFET MODEL (VDMOS)

Name Parameter Units | Default | Example
m device multiplier - 1 -
off Device initially off - 0

icvds Initial D-S voltage Vv 0.0

icvgs Initial G-S voltage Vv 0.0

temp device temperature °C 27 100

dtemp device temperature °C 0.0 50

difference
ic Vector of D-S, G-S voltages Vv 0.0
thermal Thermal model switch - -
on/off

169

170

CHAPTER 7. DEVICE MODELS

VDMOS model parameters
Name Parameter Units Default Example
VDMOS select VDMOS model - must given -
NCHAN nch type transistor - default, if not given -
PCHAN pch type transistor - required, if PMOS -
VTO Zero-bias threshold voltage Vv 3.0 4
(Vro)
KP Transconductance Aly? 25+10*chantype 5.9
parameter
PHI Surface potential Vv
LAMBDA Channel length modulation | 1/v 0.0 0.001
4)
THETA Vgs influence on mobility 1y 0.0 0.015
RD Drain ohmic resistance Q 0.0 61m
RS Source ohmic resistance Q 0.0 18m
RG Gate ohmic resistance Q 0.0 3
KF Flicker noise coefficient - 0.0
AF Flicker noise exponent - 1.0
TNOM Parameter measurement °C 27 25
temperature
RQ Quasi saturation resistance Q 0.0 0.5
fitting parameter
vVQ Quasi saturation voltage 1% 0.0 100
fitting parameter
MTRIODE Conductance multiplier in — 1.0 0.8
triode region
SUBSHIFT shift along gate voltage axis Vv 0.0
in the dual parameter
subthreshold model
KSUBTHRES slope in the single - 0.1 0.27
parameter subthreshold
model
BV Vds breakdown voltage Vv oo
IBV Current at Vds=bv A 1.0e-10
NBV Vds breakdown emission - 1.0
coefficient
RDS Drain-source shunt Q oo le7
resistance
RB Body diode ohmic Q 0.0 14m
resistance
N Body diode emission - 1.0 1.1
coefficient
TT Body diode transit time s 0.0

7.7. POWER MOSFET MODEL (VDMOS) 171
Name Parameter Units Default Example
EG Body diode activation eV 1.11
energy for temperature
effect on IS
XTI Body diode saturation - 3.0 3.2
current temperature
exponent
IS Body diode saturation A le-14 60p
current
A\ Body diode junction Vv 0.8
potential
FC Body diode coefficient for - 0.5
forward-bias depletion
capacitance formula
cJO Zero-bias body diode F 0.5n 1.5n
junction capacitance
M Body diode grading - 0.5 0.6
coefficient
CGDMIN Minimum non-linear G-D F 20p 10p
capacitance
CGDMAX Maximum non-linear G-D F 2n 2.45n
capacitance
A Non-linear Cgd capacitance - 1 0.3
parameter
CGS Gate-source capacitance F 1.4n 1.2n
TCVTH (VTOTC) | Linear VthO temperature 1/°c 0.0 0.0065
coefficient
MU (BEX) Exponent of gain - -1.5 -1.27
temperature dependency
TEXPO Drain resistance rd0 - 1.5
temperature exponent
TEXP1 Drain resistance rd1 - 0.3
temperature exponent
TRDI Drain resistance linear 1/oc 0.0
temperature coefficient
TRD2 Drain resistance quadratic | 1/(°c)? 0.0
temperature coefficient
TRG1 Gate resistance linear 1/oc 0.0
temperature coefficient
TRG2 Gate resistance quadratic 1/(cc)? 0.0
temperature coefficient
TRS1 Source resistance linear 1/oc 0.0

temperature coefficient

172 CHAPTER 7. DEVICE MODELS

Name Parameter Units Default Example
TRS2 Source resistance quadratic | 1/(°c)? 0.0
temperature coefficient
TRB1 Body resistance linear 1/°c 0.0
temperature coefficient
TRB2 Body resistance quadratic | 1/(°c)? 0.0
temperature coefficient
TKSUBTHRESI1 Linear temperature 1/oc 0.0
coefficient of ksubthres
TKSUBTHRES2 Quadratic temperature 1/(ec)? 0.0

coefficient of ksubthres

RTHIC Thermal resistance K/w 1.0 0.4
junction-case
CTHJ Thermal capacitance T/k 10e-6 Se-3
RTHCA Thermal resistance K/w 1000

case-ambient (w/o heatsink)

VDMOS electro-thermal model

Power electronic devices behavior the effect of self-heating effect. That means that the dissi-
pated power has an impact to the electrical behavior of the terminal currents. To minimize this
effect and to protect the element from thermal destruction heat sinks are supplied to this kind of
power devices.

The ngspice VDMOS model has introduced an electro-thermal approach by stamping additional
elements into the circuit matrix and by iteration the additional current control inside the spice
solver.

The transistor now has 5 nodes. Besides D, G, and S we have TJ and TCASE. The additional
nodes must be activated by the device switch THERMAL. Heat is generated in the MOS channel
and peripheral elements like resistors, its temperature is available and may be measured at node
TJ, and is fed back internally into the device equations. Within the transistor package the heat
is flowing from the channel to the metal surface of the case, at node TCASE. Here you may
connect a heat sink, to offer a flow path for the heat away from the device. The internal heat
resistance is RTHJC (junction to case), a typical data sheet value. The model also includes the
heat capacitance CTHJ of the semiconductor die and package (typically not available in the
data sheet, so to be estimated only).

The following example show the usage of ngspice electro-thermal model including a simple
heat sink:

7.7. POWER MOSFET MODEL (VDMOS) 173

General form:
MXXXXXXX nd ng ns tj tc mname thermal <m=val> <temp=t> <dtemp=t>
Example:

M1 24 2 0 tj tc IXTH48P20P thermal

rcs tc 1 0.1

csa 1 0 30m

rsa 1l amb 1.3

VTamb tamb 0 25

.MODEL IXTH48P20P VDMOS Pchan Vds=200 VT0=-4 KP=10 Lambda=5m
Mtriode=0.3 Ksubthres=120m Rs=10m Rd=20m Rds=200e6
Cgdmax=6000p Cgdmin=100p A=0.25 Cgs=5000p Cjo=9000p
Is=2e-6 Rb=20m BV=200 IBV=250e-6 NBV=4 TT=260e-9

N
N
N
+ Rthjc=0.4 Cthj=5e-3

174 CHAPTER 7. DEVICE MODELS

Chapter 8

Mixed-Mode and Behavioral Modeling
with XSPICE

Ngspice implements XSPICE extensions for behavioral and mixed-mode (analog and digital)
modeling. In the XSPICE framework this is referred to as code level modeling. Behavioral
modeling may benefit dramatically because XSPICE offers a means to add analog functionality
programmed in C. Many examples (amplifiers, oscillators, filters ...) are presented in the fol-
lowing. Even more flexibility is available because you may define your own models and use
them in addition and in combination with all the already existing ngspice functionality. Digital
and mixed mode simulation is sped up significantly by simulating the digital part in an event
driven manner, in that state equations use only a few allowed states and are evaluated only
during switching, and not continuously in time and signal as in a pure analog simulator.

This chapter describes the predefined models available in ngspice, stemming from the original
XSPICE simulator or being added to enhance the usability. The instructions for writing new
code models are given in Chapt. 24.

To make use of the XSPICE extensions, you need to compile them in. Linux, CYGWIN,
MINGW and other users may add the flag - -enable-xspice to their ./configure command
and then recompile. The pre-built ngspice for Windows distribution has XSPICE already en-
abled. For detailed compiling instructions see Chapt. 28.1.

8.1 Code Model Element & MODEL Cards

8.1.1 Syntax

Ngspice includes a library of predefined ‘Code Models’ that can be placed within any circuit
description in a manner similar to that used to place standard device models. Code model in-
stance cards always begin with the letter ‘A’, and always make use of a .MODEL card to describe
the code model desired. Section 24 of this document goes into greater detail as to how a code
model similar to the predefined models may be developed, but once any model is created and
linked into the simulator it may be placed using one instance card and one .MODEL card (note
here we conform to the SPICE custom of referring to a single logical line of information as a
‘card’). As an example, the following uses a predefined ‘gain’ code model taking as an input
some value on node 1, multiplies it by a gain of 5.0, and outputs the new value to node 2.

175

176 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Note that, by convention, input ports are specified first on code models. Output ports follow the
inputs.

Example:

al 1 2 amp
.model amp gain(gain=5.0)

In this example the numerical values picked up from single-ended (i.e. ground referenced)
input node 1 and output to single-ended output node 2 will be voltages, since in the Interface
Specification File for this code model (i.e., gain), the default port type is specified as a voltage
(more on this later). However, if you didn’t know this, the following modifications to the
instance card could be used to insure it:

Example:

al %v(1l) %v(2) amp
.model amp gain(gain=5.0)

The specification %v preceding the input and output node numbers of the instance card indicate
to the simulator that the inputs to the model should be single-ended voltage values. Other
possibilities exist, as described later.

Some of the other features of the instance and .MODEL cards are worth noting. Of particular in-
terest is the portion of the .MODEL card that specifies gain=5.0. This portion of the card assigns
a value to a parameter of the ‘gain’ model. There are other parameters that can be assigned val-
ues for this model, and in general code models will have several. In addition to numeric values,
code model parameters can take non-numeric values (such as TRUE and FALSE), and even
vector values. All of these topics will be discussed at length in the following pages. In general,
howeyver, the instance and .MODEL cards that define a code model will follow the abstract form
described below. This form illustrates that the number of inputs and outputs and the number of
parameters that can be specified is relatively open-ended and can be interpreted in a variety of
ways (note that angle-brackets ‘<’ and ‘>’ enclose optional inputs):

8.1. CODE MODEL ELEMENT & .MODEL CARDS 177

Example:

AXXXXXXX <%V,%1,%vd,%1id,%g,%qd,%h,%hd, or %d>
+ <[> <~><%Vv,%i,%vd,%id,%q,%gd,%h,%hd, or %d>
<NIN1 or +NIN1 -NIN1 or "null">
<~>,..<NIN2.. <]> >
<%V,%1,%vd,%id,%q,%gd,%h,%hd,%d or %svnam>
<[> <~><%Vv,%1i,%vd,%1id,%g,%gd,%h,%hd,

or %d><NOUT1 or +NOUT1 -NOUT1>
<~>,..<NOUT2.. <]>>
+ MODELNAME

+
+
+
+

+

.MODEL MODELNAME MODELTYPE
+ <(PARAMNAMEl= <[> VALl <VAL2... <]>> PARAMNAME2..>)>

Square brackets ([]) are used to enclose vector input nodes. In addition, these brackets are used
to delineate vectors of parameters.

The literal string ‘null’, when included in a node list, is interpreted as no connection at that input
to the model. ‘Null’ is not allowed as the name of a model’s input or output if the model only
has one input or one output. Also, ‘null’ should only be used to indicate a missing connection
for a code model; use on other XSPICE component is not interpreted as a missing connection,
but will be interpreted as an actual node name.

The tilde, ‘~’, when prepended to a digital node name, specifies that the logical value of that
node be inverted prior to being passed to the code model. This allows for simple inversion of
input and output polarities of a digital model in order to handle logically equivalent cases and
others that frequently arise in digital system design. The following example defines a NAND
gate, one input of which is inverted:

al [~1 2] 3 nandl
.model nandl d_nand (rise_delay=0.1 fall_delay=0.2)

The optional symbols %v, %i, %vd, etc. specify the type of port the simulator is to expect for
the subsequent port or port vector. The meaning of each symbol is given in Table 8.1.

The symbols described in Table 8.1 may be omitted if the default port type for the model is
desired. Note that non-default port types for multi-input or multi-output (vector) ports must be
specified by placing one of the symbols in front of EACH vector port. On the other hand, if all
ports of a vector port are to be declared as having the same non-default type, then a symbol may
be specified immediately prior to the opening bracket of the vector. The following examples
should make this clear:

Example 1: - Specifies two differential voltage connections, one
to nodes 1 & 2, and one to nodes 3 & 4.

178 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Port Type Modifiers
Modifier | Interpretation
Yov represents a single-ended voltage port - one node name or number is expected
for each port.
Yo1 represents a single-ended current port - one node name or number is expected
for each port.
Yog represents a single-ended voltage-input, current-output (VCCS) port - one

node name or number is expected for each port. This type of port is auto-
matically an input/output.

9h represents a single-ended current-input, voltage-output (CCVS) port - one
node name or number is expected for each port. This type of port is auto-
matically an input/output.

9d represents a digital port - one node name or number is expected for each port.
This type of port may be either an input or an output.

%vnam | represents the name of a voltage source, the current through which is taken as
an input. This notation is provided primarily in order to allow models defined
using SPICE2G6 syntax to operate properly in XSPICE.

Jovd represents a differential voltage port - two node names or numbers are ex-
pected for each port.

%o1d represents a differential current port - two node names or numbers are ex-
pected for each port.

Yogd represents a differential VCCS port - two node names or numbers are expected
for each port.

9ohd represents a differential CCVS port - two node names or numbers are expected
for each port.

Table 8.1: Port Type Modifiers

8.1. CODE MODEL ELEMENT & .MODEL CARDS 179

svd [1 2 3 4]

Example 2: - Specifies two single-ended connections to node 1 and
at node 2, and one differential connection to
nodes 3 & 4.

%v [1 2 %vd 3 4]

Example 3: - Identical to the previous example...parenthesis
are added for additional clarity.

%Sv [1 2 %vd(3 4)]

Example 4: - Specifies that the node numbers are to be treated in the
default fashion for the particular model.
If this model had ‘%v” as a default for this
port, then this notation would represent four single-ended
voltage connections.

[1 2 3 4]

The parameter names listed on the .MODEL card must be identical to those named in the code
model itself. The parameters for each predefined code model are described in detail in Sec-
tions 8.2 (analog), 8.3 (Hybrid, A/D) and 8.4 (digital). The steps required in order to specify
parameters for user-defined models are described in Chapter 24.

8.1.2 Examples

The following is a list of instance card and associated .MODEL card examples showing use of
predefined models within an XSPICE deck:

al 1 2 amp
.model amp gain(in_offset=0.1 gain=5.0 out_offset=-0.01)

a2 %i[1l 2] 3 suml
.model suml summer(in_offset=[0.1 -0.2] in_gain=[2.0 1.0]
+ out_gain=5.0 out_offset=-0.01)

a2l %i[1l %vd(2 5) 7 10] 3 sum2
.model sum2 summer(out_gain=10.0)

a5 1 2 limit5s

.model 1imit5 limit(in_offset=0.1 gain=2.5

+ out_lower_limit=-5.0 out_upper_limit=5.0 limit_range=0.10
+ fraction=FALSE)

a7 2 %id(4 7) xfer_cntll
.model xfer_cntll pwl(x_array=[-2.0 -1.0 2.0 4.0 5.0]
+ y_array=[-0.2 -0.2 0.1 2.0 10.0]

180 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

+ input_domain=0.05 fraction=TRUE)

a8 3 %gd(6 7) switch3
.model switch3 aswitch(cntl_off=0.0 cntl_on=5.0 r_off=1eb
+ r_on=10.0 log=TRUE)

8.1.3 Search path for file input

Several code models (filesource 8.2.9, d_source 8.4.21, d_state 8.4.18) call additional
files for supply of input data. A call to file="path/filename" (or input_file=, state_file=)
in the .model card will start a search sequence for finding the file. path may be an absolute
path. If path is omitted or is a relative path, filename is looked for according to the following
search list:

Infile_Path/<path/filename> (Infile_Path is the path of the input file *.Sp containing the
netlist)

NGSPICE_INPUT_DIR/<path/filename> (where an additional path is set by the environmen-
tal variable)

<path/filename> (where the search is relative to the current directory (OS dependent))

8.1.4 Code model location and assessment

To make use of the XSPICE extensions, you have to compile ngspice accordingly (see Chapt.
28.1). ngspice then is prepared to load and use the code models. At the same time the code
models are re-made. They are, however, not linked into ngspice at compile time, but reside in
extra shared libraries or dlls, with names analog.cm, digital.cm, spice2poly.cm, xtradev.cm,
xtraevt.cm, and table.cm. At run time, with XSPICE enabled, they are loaded dynamically
into ngspice by the command codemodel (13.5.15). The sequence to load the codemodels is:
Upon start-up ngspice locates, reads, and executes spinit, the standard initialization file (12.5).
Within spinit, you will find the commands to load the codemodels, typically with a path for the
code models relative to the current working directory (the location of ngspice, in case of shared
ngspice the location of the caller).

If you don’t want to make use of spinit, you may run a script in ngspice, before loading any
circuit, which contains the codemodel commands. When using shared ngspice, one may issue
the codemodel commands directly after initialization, with absolute path or path relative to the
current working directory.

In a standard ngspice installation in MS Windows, the codemodels are located in ../lib/ngspice,
e.g. in C:\Spiceb64\lib\ngspice (see also 28.2.1).

In Linux, it depends on the OS invocation. In openSUSE you may find the codemodels in
/usr/local/lib64/ngspice, while ngspice resides in /usr/local/bin.

8.2. ANALOG MODELS 181

8.2 Analog Models

The following analog models are supplied with XSPICE. The descriptions included consist
of the model Interface Specification File and a description of the model’s operation. This is
followed by an example of a simulator-deck placement of the model, including the .MODEL card
and the specification of all available parameters.

8.2.1 Gain

NAME_TABLE:

C_Function_Name: cm_gain

Spice_Model _Name: gain

Description: "A simple gain block"
PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v %
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no
Vector.Bounds: - -
Null.Allowed: no no
PARAMETER_TABLE:

Parameter_Name: in_offset gain out_offset
Description: "input offset" "gain" "output offset”
Data_Type: real real real
Default_Value: 0.0 1.0 0.0
Limits: - - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

Description: This function is a simple gain block with optional offsets on the input and the
output. The input offset is added to the input, the sum is then multiplied by the gain, and
the result is produced by adding the output offset. This model will operate in DC, AC,
and Transient analysis modes.

Example:

al 1 2 amp
.model amp gain(in_offset=0.1 gain=5.0
+ out_offset=-0.01)

182 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

8.2.2 Summer

NAME_TABLE:

C_Function_Name: cm_summer

Spice_Model_Name: summer

Description: "A summer block"

PORT_TABLE:

Port Name: in out
Description: "input vector" “output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: yes no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: in_offset in_gain
Description: "input offset vector" "input gain vector"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: yes yes
Vector_Bounds: in in
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: out_gain out_offset
Description: "output gain” "output offset"
Data_Type: real real
Default_Value: 1.0 0.0

Limits: - -

Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes

Description: This function is a summer block with 2-to-N input ports. Individual gains and
offsets can be applied to each input and to the output. Each input is added to its respective
offset and then multiplied by its gain. The results are then summed, multiplied by the
output gain and added to the output offset. This model will operate in DC, AC, and
Transient analysis modes.

Example usage:
a2 [1 2] 3 suml

.model suml summer(in_offset=[0.1 -0.2] in_gain=[2.0 1.0]
+ out_gain=5.0 out_offset=-0.01)

8.2. ANALOG MODELS

8.2.3 Multiplier

NAME_TABLE:
C_Function_Name: cm_mult
Spice_Model_Name: mult

Description: "multiplier block"

PORT_TABLE:

Port_Name: in out
Description: "input vector" "output"
Direction: in out
Default_Type: v %
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: in_offset in_gain
Description: "input offset vector" "input gain vector"
Data_Type: real real
Default_Value: 0.0 1.0

Limits: - -

Vector: yes yes
Vector_Bounds: in in
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: out_gain out_offset
Description: "output gain" "output offset"
Data_Type: real real
Default_Value: 1.0 0.0

Limits: - -

Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: This function is a multiplier block with 2-to-N input ports. Individual gains and
offsets can be applied to each input and to the output. Each input is added to its respective
offset and then multiplied by its gain. The results are multiplied along with the output
gain and are added to the output offset. This model will operate in DC, AC, and Transient
analysis modes. However, in ac analysis it is important to remember that results are
invalid unless only one input of the multiplier is connected to a node that i connected to
an AC signal (this is exemplified by the use of a multiplier to perform a potentiometer
function: one input is DC, the other carries the AC signal).

Example SPICE Usage:

a3 [1 2 3] 4 sigmult
.model sigmult mult(in_offset=[0.1 0.1 -0.1]
+ in_gain=[10.0 10.0 10.0] out_gain=5.0 out_offset=0.05)

184

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

8.2.4 Divider

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

Description:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

cm_divide
divide
"divider block"

num
"numerator"

in

v
[v,vd,i,id,vnam]
no

no

num_offset

"numerator offset"

real
0.0

no

yes

den_offset

"denominator offset"

real
0.0

no

yes

den_lower_limit

den
"denominator"

in

v
[v,vd,i,id,vnam]
no

no

num_gain
"numerator gain"
real

1.0

no

yes

den_gain

"denominator gain"

real
1.0

no

yes

"denominator lower limit"

real
1.0e-10

no

yes

den_domain

"denominator smoothing domain"

real
1.0e-10

no

out
"output"
out

v
[v,vd,i,id]
no

no

8.2. ANALOG MODELS

Vector_Bounds:

185

Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: fraction

Description: "smoothing fraction/absolute value switch"
Data_Type: boolean

Default_Value: false

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: out_gain out_offset
Description: "output gain" "output offset"
Data_Type: real real
Default_Value: 1.0 0.0

Limits: - -

Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes

Description: This function is a two-quadrant divider. It takes two inputs; num (numerator) and

den (denominator). Divide offsets its inputs, multiplies them by their respective gains,
divides the results, multiplies the quotient by the output gain, and offsets the result. The
denominator is limited to a value above zero via a user specified lower limit. This limit is
approached through a quadratic smoothing function, the domain of which may be spec-
ified as a fraction of the lower limit value (default), or as an absolute value. This model
will operate in DC, AC and Transient analysis modes. However, in ac analysis it is impor-
tant to remember that results are invalid unless only one input of the divider is connected
to a node that is connected to an ac signal (this is exemplified by the use of the divider to
perform a potentiometer function: one input is dc, the other carries the ac signal).

Example SPICE Usage:

ad 1 2 4 divider

.model divider divide(num_offset=0.1 num_gain=2.5 den_offset=-0.1
+ den_gain=5.0 den_lower_limit=1e-5 den_domain=1le-6

+ fraction=FALSE out_gain=1.0 out_offset=0.0)

8.2.5 Limiter

NAME_TABLE:

C_Function_Name: cm_limit

Spice_Model_Name: limit

Description: "limit block"

PORT_TABLE:

Port Name: in out
Description: "input" “output"
Direction: in out

186 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name:

out_lower_limit

out_upper_limit

Description: "output lower limit" "output upper limit"
Data_Type: real real

Default_Value: 0.0 1.0

Limits: - -

Vector: no no

Vector_Bounds: - -

Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name:

limit_range

Description: "upper & lower smoothing range"
Data_Type: real

Default_Value: 1.0e-6

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: fraction

Description: "smoothing fraction/absolute value switch"
Data_Type: boolean

Default_Value: FALSE

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Description: The Limiter is a single input, single output function similar to the Gain Block.
However, the output of the Limiter function is restricted to the range specified by the
output lower and upper limits. This model will operate in DC, AC and Transient analysis
modes. Note that the limit range is the value below the upper limit and above the lower
limit at which smoothing of the output begins. For this model, then, the limit range
represents the delta with respect to the output level at which smoothing occurs. Thus, for

8.2. ANALOG MODELS

187

an input gain of 2.0 and output limits of 1.0 and -1.0 volts, the output will begin to smooth
out at 0.9 volts, which occurs when the input value is at +0.4.

Example SPICE Usage:

a5 1 2 limit5

.model limit5 limit(in_offset=0.1 gain=2.5 out_lower_limit=-5.0

+ out_upper_limit=5.0 limit_range=0.10 fraction=FALSE)

8.2.6 Controlled Limiter

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

Description:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

cm_climit
climit

"controlled limiter block"

in

"input"

in

v
[v,vd,i,id,vnam]
no

cntl_upper

"upper lim. control input"

in

v
[v,vd,i,id,vnam]
no

no no

cntl_lower out
"lower limit control input" "output"
in out

Vv Vv
[v,vd,1i,id,vnam] [v,vd,1i,id]
no no

no no
in_offset gain

"input offset" "gain"

real real

0.0 1.0

no no

yes yes

upper_delta

"output upper delta"
real

0.0

no

lower_delta

"output lower delta"
real

0.0

no

188 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

yes yes

limit_range

"upper & lower sm.
real

1.0e-6

range"

no

yes

fraction

"smoothing %/abs switch"
boolean

FALSE

no

yes

Description: The Controlled Limiter is a single input, single output function similar to the Gain

Block. However, the output of the Limiter function is restricted to the range specified by
the output lower and upper limits. This model will operate in DC, AC, and Transient
analysis modes. Note that the limit range is the value below the cntl_upper limit and
above the cntl_lower limit at which smoothing of the output begins (minimum positive
value of voltage must exist between the cntl_upper input and the cntl_lower input at
all times). For this model, then, the limit range represents the delta with respect to the
output level at which smoothing occurs. Thus, for an input gain of 2.0 and output limits
of 1.0 and -1.0 volts, the output will begin to smooth out at +0.9 volts, which occurs
when the input value is at £0.4. Note also that the Controlled Limiter code tests the
input values of cntl_upper and cntl_lower to make sure that they are spaced far enough
apart to guarantee the existence of a linear range between them. The range is calculated
as the difference between (cntl_upper — upper_delta — limit_range) and (cntl_lower +
lower_delta + limit_range) and must be greater than or equal to zero. Note that when
the limit range is specified as a fractional value, the limit range used in the above is taken
as the calculated fraction of the difference between cntl_upper and cntl_lower. Still, the
potential exists for too great a limit range value to be specified for proper operation, in
which case the model will return an error message.

Example SPICE Usage:

ab 3 6 8 4 varlimit

.model varlimit climit(in_offset=0.1 gain=2.5 upper_delta=0.0
+ lower_delta=0.0 limit_range=0.10 fraction=FALSE)

8.2.7 PWL Controlled Source

NAME_TABLE:
C_Function_Name: cm_pwl
Spice_Model_Name: pwl

Description: "piecewise linear controlled source"
PORT_TABLE:

Port_Name: in out
Description: "input" “output"

Direction: in out

8.2. ANALOG MODELS

189

Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: X_array y_array
Description: "x-element array" "y-element array"
Data_Type: real real
Default_Value: - -

Limits: - -

Vector: yes yes
Vector_Bounds: [2 -] [2 -]
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: input_domain fraction
Description: "input sm. domain" "smoothing %/abs switch"
Data_Type: real boolean
Default_Value: 0.01 TRUE
Limits: [le-12 0.5] -

Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

STATIC_VAR_TABLE:
Static_Var_Name:
Data_Type:
Description:

last_x_value
pointer
"iteration holding variable for limiting"

Description: The Piece-Wise Linear Controlled Source is a single input, single output func-
tion similar to the Gain Block. However, the output of the PWL Source is not necessarily
linear for all values of input. Instead, it follows an I/O relationship specified by you via
the x_array and y_array coordinates. This is detailed below.

The x_array and y_array values represent vectors of coordinate points on the x and
y axes, respectively. The x_array values are progressively increasing input coordinate
points, and the associated y_array values represent the outputs at those points. There
may be as few as two (x_array[n], y_array[n]) pairs specified, or as many as memory
and simulation speed allow. This permits you to very finely approximate a non-linear
function by capturing multiple input-output coordinate points.

Two aspects of the PWL Controlled Source warrant special attention. These are the han-
dling of endpoints and the smoothing of the described transfer function near coordinate
points.

In order to fully specify outputs for values of in outside of the bounds of the PWL func-
tion (i.e., less than x_array[0] or greater than x_array[n], where n is the largest user-
specified coordinate index), the PWL Controlled Source model extends the slope found
between the lowest two coordinate pairs and the highest two coordinate pairs. This has
the effect of making the transfer function completely linear for in less than x_array[0]
and in greater than x_array[n]. It also has the potentially subtle effect of unrealistically
causing an output to reach a very large or small value for large inputs. You should thus

190 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

keep in mind that the PWL Source does not inherently provide a limiting capability.

In order to diminish the potential for non-convergence of simulations when using the
PWL block, a form of smoothing around the x_array, y_array coordinate points is nec-
essary. This is due to the iterative nature of the simulator and its reliance on smooth first
derivatives of transfer functions in order to arrive at a matrix solution. Consequently, the
input_domain and fraction parameters are included to allow you some control over
the amount and nature of the smoothing performed.

Fraction is a switch that is either TRUE or FALSE. When TRUE (the default setting),
the simulator assumes that the specified input domain value is to be interpreted as a frac-
tional figure. Otherwise, it is interpreted as an absolute value. Thus, if fraction=TRUE
and input_domain=0.10, The simulator assumes that the smoothing radius about each
coordinate point is to be set equal to 10% of the length of either the x_array segment
above each coordinate point, or the x_array segment below each coordinate point. The
specific segment length chosen will be the smallest of these two for each coordinate point.
On the other hand, if fraction=FALSE and input_domain=0.10, then the simulator will
begin smoothing the transfer function at 0.10 volts (or amperes) below each x_array co-
ordinate and will continue the smoothing process for another 0.10 volts (or amperes)
above each x_array coordinate point. Since the overlap of smoothing domains is not
allowed, checking is done by the model to ensure that the specified input domain value is
not excessive.

One subtle consequence of the use of the fraction=TRUE feature of the PWL Con-
trolled Source is that, in certain cases, you may inadvertently create extreme smoothing
of functions by choosing inappropriate coordinate value points. This can be demonstrated
by considering a function described by three coordinate pairs, such as (-1,-1), (1,1),
and (2,1). In this case, with a 10% input_domain value specified (fraction=TRUE,
input_domain=0.10), you would expect to see rounding occur between in=0.9 and
in=1.1, and nowhere else. On the other hand, if you were to specify the same function
using the coordinate pairs (-100,-100), (1,1) and (201,1), you would find that rounding
occurs between in=-19 and in=21. Clearly in the latter case the smoothing might cause
an excessive divergence from the intended linearity above and below in=1.

Example SPICE Usage:
a7 in out xfer_cntll

.model xfer_cntll pwl(x_array=[-2.0 -1.0 2.0 4.0 5.0]
+ y_array=[-0.2 -0.2 0.1 2.0 10.0]
+ input_domain=0.05 fraction=TRUE)

8.2.8 PWL Time Controlled Source with optional edge smoothing

NAME_TABLE:

C_Function_Name: cm_pwlts

Spice_Model_Name: pwlts

Description: "piecwise linear controlled source, time input"
PORT_TABLE:

Port_Name: out

Description: "output"

Direction: out

Default_Type: v

8.2. ANALOG MODELS

Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

STATIC_VAR_TABLE:

Static_Var_Name:
Data_Type:
Vector:
Description:

STATIC_VAR_TABLE:

Static_Var_Name:
Data_Type:
Description:

191

[v,vd,i,id]

no

no

x_array y_array
"x-element array" "y-element array"
real real

yes yes

[2 -] [2 -1

no no

fraction
"smoothing %/abs switch"

input_domain
"input sm. domain"

real boolean
0.01 TRUE
[le-12 0.5] -

no no

yes yes
limit

"const or linearily extrapolated output"
boolean
FALSE

no

yes

last_x_value

pointer

no

"iteration holding variable for limiting"

X y
pointer pointer
"time array" "y-coefficient array"

Description: The Piece-Wise Linear Time Controlled Source is a time input, single output

function. The output follows an time/output relationship specified by you via the x_array
and y_array coordinates. This is detailed below.

The x_array and y_array values represent vectors of coordinate points on the x and y
axes, respectively. The x_array values are progressively increasing positive input coor-
dinate points (minimum is 0), and the associated y_array values represent the outputs
at those points. There may be as few as two (x_array[n], y_array[n]) pairs speci-
fied, or as many as memory and simulation speed allow. This permits you to very finely

192

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

approximate a non-linear time dependent waveform by capturing multiple input-output
coordinate points.

Two aspects of the PWLTS Controlled Source warrant special attention. These are the
handling of endpoints and the smoothing of the described transfer function near coordi-
nate points.

In order to fully specify outputs for values of in outside of the bounds of the PWLTS func-
tion (i.e., less than x_array[0] (with x_array[0] >= 0 always) or greater than x_array[n],
where n is the largest user-specified coordinate index), the PWLTS Time Controlled
Source model extends the slope found between the lowest two coordinate pairs and the
highest two coordinate pairs. This has the effect of making the transfer function com-
pletely linear for times less than x_array[0] and times greater than x_array[n]. It also
has the potentially subtle effect of unrealistically causing an output to reach a very large
or small value for large input times.

In order to diminish the potential for non-convergence of simulations when using the
PWL block, a form of smoothing around the x_array, y_array coordinate points is nec-
essary. This is due to the iterative nature of the simulator and its reliance on smooth first
derivatives of transfer functions in order to arrive at a matrix solution. Consequently, the
input_domain and fraction parameters are included to allow you some control over
the amount and nature of the smoothing performed.

Fraction is a switch that is either TRUE or FALSE. When TRUE (the default setting),
the simulator assumes that the specified input domain value is to be interpreted as a frac-
tional figure. Otherwise, it is interpreted as an absolute value. Thus, if fraction=TRUE
and input_domain=0.10, the simulator assumes that the smoothing radius about each
coordinate point is to be set equal to 10% of the length of either the x_array segment
above each coordinate point, or the x_array segment below each coordinate point. The
specific segment length chosen will be the smallest of these two for each coordinate point.
On the other hand, if fraction=FALSE and input_domain=0.10, then the simulator will
begin smoothing the transfer function at 0.10 seconds below each x_array coordinate and
will continue the smoothing process for another 0.10 seconds above each x_array coor-
dinate point. Since the overlap of smoothing domains is not allowed, checking is done by
the model to ensure that the specified input domain value is not excessive.

One subtle consequence of the use of the fraction=TRUE feature of the PWL Time
Controlled Source is that, in certain cases, you may inadvertently create extreme smooth-
ing of functions by choosing inappropriate coordinate value points. This can be demon-
strated by considering a function described by three coordinate pairs, such as (0,-1), (2,1),
and (3,1). In this case, with a 10% input_domain value specified (fraction=TRUE,
input_domain=0.10), you would expect to see rounding occur between time=1.9 and
time=2.1, and nowhere else. On the other hand, if you were to specify the same function
using the coordinate pairs (0,-100), (101,1) and (301,1), you would find that rounding
occurs between time=81 and time=121. Clearly in the latter case the smoothing might
cause an excessive divergence from the intended linearity above and below time=101.

Example SPICE Usage:
a8 out pwl_cntll

.model pwl_cntll pwlts(x_array=[0 1m 1.1m 2m 2.1m]

+ y_array=[-0.2 -0.2 0.6 0.6 0.35]
+ input_domain=0.2 fraction=TRUE
+ 1imit=TRUE)

8.2. ANALOG MODELS 193

8.2.9 Filesource (PWL sourced from file)

NAME_TABLE:
C_Function_Name:
Spice_Model_Name:

cm_filesource
filesource

Description: "File Source"
PORT_TABLE:

Port_Name: out

Description: "output"

Direction: out

Default_Type: v

Allowed_Types: [v,vd,i,id]

Vector: yes

Vector_Bounds: [1 -]

Null_Allowed: no

PARAMETER_TABLE:

Parameter_Name: timeoffset timescale
Description: "time offset" "timescale"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -

Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: timerelative amplstep
Description: "relative time" ‘"step amplitude"
Data_Type: boolean boolean
Default_Value: FALSE FALSE
Limits: - -

Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: amploffset amplscale
Description: "ampl offset" "amplscale"
Data_Type: real real
Default_Value: - -

Limits: - -

Vector: yes yes
Vector_Bounds: [1 -] [1 -]
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: file

Description: "file name"

Data_Type: string

Default_Value: "filesource.txt"

Limits: -

Vector:

no

194 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds: -
Null_Allowed: yes

Description: The File Source is similar to the Piece-Wise Linear (PWL) Source, except that
the waveform data is read from a file instead of being taken from parameter vectors. The
file format is line oriented ASCII. ‘# and ‘;’ are comment characters; all characters from
a comment character until the end of the line are ignored. Each line consists of two or
more real values. The first value is the time; subsequent values correspond to the outputs.
Values are separated by spaces. Time values are absolute and must be monotonically in-
creasing, unless timerelative is set to TRUE, in which case the values specify the interval
between two samples and must be positive. Waveforms may be scaled and shifted in the
time dimension by setting timescale and timeoffset.

Amplitudes can also be scaled and shifted using amplscale and amploffset. Amplitudes
are normally interpolated between two samples, unless amplstep is set to TRUE.

Note: The file named by the parameter filename in file="filename" is sought after accord-
ing to a search list described in 8.1.3.

Example SPICE Usage:
a8 %vd([1 0 2 0]) filesrc

.model filesrc filesource (file="sine.m" amploffset=[0 O] amplscale=[1 1]
+ timeoffset=0 timescale=1
+ timerelative=false amplstep=false)

Example input file:

name: sine.m

two output ports

column 1: time

columns 2, 3: values
001
3.90625e-09 0.02454122852291229 0.9996988186962042
7.8125e-09 0.04906767432741801 0.9987954562051724
1.171875e-08 0.07356456359966743 0.9972904566786902

8.2.10 Multi_input_ PWL_block

NAME_TABLE:

C_Function_Name: cm_multi_input_pwl
Spice_Model_Name: multi_input_pwl
Description: "multi_input_pwl block"
PORT_TABLE:

Port_Name: in out

Description: "input array" "output"

8.2. ANALOG MODELS

Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

in

vd
[vd,id]
yes

[2 -]
no

X
"X array"
real

yes
[2 -]

no

model

"model type"
string

"and"

no

yes

195

out

vd
[vd,id]
no

no

y
"y array"

real

yes
[2 -]

no

Description: Multi-input gate voltage controlled voltage source that supports and or or gating.
The x’s and y’s represent the piecewise linear variation of output (y) as a function of input
(x). The type of gate is selectable by the parameter model. In case the model is and, the
smallest input determines the output value (i.e. the and function). In case the model is or,
the largest input determines the output value (i.e. the or function). The inverse of these
functions (i.e. nand and nor) is constructed by complementing the y array.

Example SPICE Usage:

a82 [1 020 3 0] 70 pwlm

+
+

8.2.11 Analog Switch

NAME_TABLE:
C_Function_Name:
Spice_Model_Name:
Description:
PORT_TABLE:

Port Name:

cm_aswitch
aswitch
"analog switch"

cntl_in

out

196 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:

Data_Type:
Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

"input"

in

Vv
[v,vd,i,id]
no

no

cntl_off

"control ‘off’ value"
real

0.0

no

yes

r_off

"off resistance"
real

1.0el2

no

yes

r_on
"on resistance"

real
1.0

no

yes

"resistive output”
out

ad

[gd]

no

no

cntl_on
"control
real

1.0

{ ’

on’ value"

no

yes

log

"log/linear switch"
boolean

TRUE

no

yes

limit

"set upper and lower
limits to resistance"
boolean

false

no

yes

Description: The Analog Switch is a resistor that varies either logarithmically or linearly be-
tween specified values of a controlling input voltage or current. Note that the input is not
internally limited when parameter 1imit is not given. Therefore, if the controlling signal
exceeds the specified OFF state or ON state value, the resistance may become excessively
large or excessively small (in the case of logarithmic dependence), or may become neg-
ative (in the case of linear dependence). For the experienced user, these excursions may
prove valuable for modeling certain devices, but in most cases you are advised to add lim-
iting of the controlling input if the possibility of excessive control value variation exists.
Alternatively you may set the parameter 1imit to TRUE. Then the resulting resistance is
limited to r_on or r_off if the controlling voltage exceeds the given boundaries cntl_on
or cntl_off. At these boundaries sharp edges in the R(control) characteristics will occur
which may lead to convergence problems.

8.2. ANALOG MODELS 197

Example SPICE Usage:
a8 3 %gd(6 7) switch3

.model switch3 aswitch(cntl_off=0.0 cntl_on=5.0 r_off=1eb
r_on=10.0 log=TRUE limit=TRUE)

+

8.2.12 Alternative Analog Switch

NAME_TABLE:
C_Function_Name: cm_pswitch
Spice_Model_Name: pswitch

Description: "analog switch alternative"

PORT_TABLE:

Port Name: cntl_in out

Description: "input" "resistive output”
Direction: inout inout
Default_Type: gd ad

Allowed_Types: [g,9d] [gd]

Vector: no no

Vector_Bounds: - -

Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: cntl_off cntl_on
Description: "control ‘off’ value" "control ‘on’ value"
Data_Type: real real
Default_Value: 0.0 1.0

Limits: - -

Vector: no no

Vector_Bounds: - -

Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: r_off log

Description: "off resistance" "log/linear switch"
Data_Type: real boolean
Default_Value: 1.0el2 TRUE

Limits: - -

Vector: no no

Vector_Bounds: - -

Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: r_on r_cntl_in
Description: "on resistance" "input resistance for control terminal"
Data_Type: real real
Default_Value: 1.0 lel2

Limits: - -

Vector: no no

Vector_Bounds:

198 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Null_Allowed: yes yes

Description: The Alternative Analog Switch is a resistor that varies either logarithmically or
linearly between specified values of a controlling input voltage or current. An input resis-
tance r_cntl_in may be specified. The output resistance is limited to r_on or r_off. At
the control boundaries cntl_on or cntl_off the R(control) characteristics are slightly
rounded. This behaviour is PSPICE-compatible and instances of this device are generated
when parsing PSPICE netlists in compatability mode.

Example SPICE Usage:

a9 %g 13 %gd(16 17) switch4

.model switch4 pswitch(cntl_off=0.0 cntl_on=5.0 r_off=1e6
r_on=10.0 r_cntl_in=1lell log=TRUE)

+

8.2.13 Zener Diode

NAME_TABLE:
C_Function_Name: cm_zener
Spice_Model_Name: zener

Description: "zener diode"

PORT_TABLE:

Port Name: z

Description: "zener"

Direction: inout

Default_Type: gd

Allowed_Types: [gd]

Vector: no

Vector_Bounds: -

Null_Allowed: no

PARAMETER_TABLE:

Parameter_Name: v_breakdown i_breakdown
Description: "breakdown voltage" "breakdown current"
Data_Type: real real
Default_Value: - 2.0e-2
Limits: [1.0e-6 1.0e6] [1.0e-9 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no yes
PARAMETER_TABLE:

Parameter_Name: i_sat n_forward
Description: "saturation current" "forward emission coefficient"
Data_Type: real real
Default_Value: 1.0e-12 1.0

Limits: [1.0e-15 -] [0.1 10]
Vector: no no

Vector_Bounds:

8.2. ANALOG MODELS 199

Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: limit_switch

Description: "switch for on-board limiting (convergence aid)"
Data_Type: boolean

Default_Value: FALSE

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

STATIC_VAR_TABLE:

Static_Var_Name: previous_voltage

Data_Type: pointer

Description: "iteration holding variable for limiting"

Description: The Zener Diode models the DC characteristics of most zeners. This model
differs from the Diode/Rectifier by providing a user-defined dynamic resistance in the
reverse breakdown region. The forward characteristic is defined by only a single point,
since most data sheets for zener diodes do not give detailed characteristics in the forward
region.

The first three parameters define the DC characteristics of the zener in the breakdown
region and are usually explicitly given on the data sheet.

The saturation current refers to the relatively constant reverse current that is produced
when the voltage across the zener is negative, but breakdown has not been reached. The
reverse leakage current determines the slight increase in reverse current as the voltage
across the zener becomes more negative. It is modeled as a resistance parallel to the
zener with value v breakdown /i rev.

Note that the limit switch parameter engages an internal limiting function for the zener.
This can, in some cases, prevent the simulator from converging to an unrealistic solution
if the voltage across or current into the device is excessive. If use of this feature fails to
yield acceptable results, the convlimit option should be tried (add the following statement
to the SPICE input deck: .options convlimit)

Example SPICE Usage:
a9 3 4 vreflo

.model vreflO zener(v_breakdown=10.0 i_breakdown=0.02
+ r_breakdown=1.0 i_rev=1le-6 i_sat=le-12)

8.2.14 Current Limiter

NAME_TABLE:

C_Function_Name: cm_ilimit
Spice_Model_Name: ilimit

Description: "current limiter block"
PORT_TABLE:

Port Name: in pos_pwr

200 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:

"input" "positive power supply"
in inout

v g

[v,vd] [g,9d]

no no

no yes

neg_pwr out
"negative power supply" "output"
inout inout

g g

[9,9d] [g9,9d]

no no

yes no
in_offset gain
"input offset" "gain"
real real

0.0 1.0

no no

yes yes
r_out_source r_out_sink

"sourcing resistance"
real

1.0

[1.0e-9 1.0e9]

no

yes

i_limit_source

"current sourcing limit"

real

[1.0e-12 -]
no

yes

i_limit_sink
"current sinking limit"
real

"sinking resistance"
real

1.0

[1.0e-9 1.0e9]

no

yes

8.2. ANALOG MODELS

Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:

Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

201

[1.0e-12 -]
no

yes

V_pwr_range
"upper & lower power
supply smoothing range"

i_source_range
"sourcing current
smoothing range"

real real

1.0e-6 1.0e-9
[1.0e-15 -] [1.0e-15 -]
no no

yes yes

i_sink_range

"sinking current smoothing range"
real

1.0e-9

[1.0e-15 -]

no

yes

r_out_domain

"internal/external voltage delta smoothing range"
real

1.0e-9

[1.0e-15 -]

no

yes

Description: The Current Limiter models the behavior of an operational amplifier or compara-
tor device at a high level of abstraction. All of its pins act as inputs; three of the four also
act as outputs. The model takes as input a voltage value from the in connector. It then ap-
plies an offset and a gain, and derives from it an equivalent internal voltage (veq), which
it limits to fall between pos_pwr and neg_pwr. If veq is greater than the output voltage
seen on the out connector, a sourcing current will flow from the output pin. Conversely,
if the voltage is less than vout, a sinking current will flow into the output pin.

Depending on the polarity of the current flow, either a sourcing or a sinking resistance
value (r_out_source, r_out_sink) is applied to govern the vout/i_out relationship.
The chosen resistance will continue to control the output current until it reaches a max-
imum value specified by either i_1imit_source or i_limit_sink. The latter mimics
the current limiting behavior of many operational amplifier output stages.

During all operation, the output current is reflected either in the pos_pwr connector cur-
rent or the neg_pwr current, depending on the polarity of i_out. Thus, realistic power
consumption as seen in the supply rails is included in the model.

202 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

The user-specified smoothing parameters relate to model operation as follows: v_pwr_range
controls the voltage below vpos_pwr and above vneg_pwr inputs beyond which veq =

gain (vin+v,rrse) is smoothed; i_source_range specifies the current below i_limit_source
at which smoothing begins, as well as specifying the current increment above i_out=0.0

at which i_pos_pwr begins to transition to zero; i_sink_range serves the same pur-

pose with respect to i_limit_sink and i_neg_pwr that i_source_range serves for

i limit_source and i_pos_pwr; r_out_domain specifies the incremental value above

and below (veq-vout)=0.0 at which r_out will be set to r_out_source and r_out_sink,
respectively. For values of (veq-vout) less than r_out_domain and greater than - r_out_domain,
r_out is interpolated smoothly between r_out_source and r_out_sink.

Example SPICE Usage:
alo 3 10 20 4 amp3

.model amp3 ilimit(in_offset=0.0 gain=16.0 r_out_source=1.0

+ r_out_sink=1.0 i_limit_source=1le-3
+ i_limit_sink=10e-3 v_pwr_range=0.2
+ i_source_range=le-6 i_sink_range=le-6
+ r_out_domain=1e-6)

8.2.15 Hysteresis Block
NAME_TABLE:
C_Function_Name: cm_hyst
Spice_Model_Name: hyst
Description: "hysteresis block"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_low in_high
Description: "input low value" "input high value"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: hyst out_lower_limit
Description: "hysteresis" "output lower limit"

8.2. ANALOG MODELS

Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

real
0.1
[0.0 -]
no

yes

out_upper_limit
"output upper limit"
real

1.0

no

yes

fraction

real
0.0

no

yes

input_domain

"input smoothing domain"
real

0.01

no

yes

"smoothing fraction/absolute value switch"

boolean
TRUE

no

yes

203

Description: The Hysteresis block is a simple buffer stage that provides hysteresis of the output
with respect to the input. The in_Tlow and in_high parameter values specify the center
voltage or current inputs about which the hysteresis effect operates. The output values
are limited to out_lower_limit and out_upper_limit. The value of hyst is added to
the in_Tlow and in_high points in order to specify the points at which the slope of the
hysteresis function would normally change abruptly as the input transitions from a low
to a high value. Likewise, the value of hyst is subtracted from the in high and in low
values in order to specify the points at which the slope of the hysteresis function would
normally change abruptly as the input transitions from a high to a low value. In fact, the
slope of the hysteresis function is never allowed to change abruptly but is smoothly varied
whenever the input domain smoothing parameter is set greater than zero.

Example SPICE Usage:

all 1 2 schmittl

.model schmittl hyst(in_low=0.7 in_high=2.4 hyst=0.5
out_lower_1imit=0.5 out_upper_limit=3.0
input_domain=0.01 fraction=TRUE)

+
+

8.2.16 Differentiator

NAME_TABLE:

204 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

C_Function_Name:
Spice_Model_Name:
Description:
PORT_TABLE:

Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

cm_d_dt
d_dt

"time-derivative block"

in

"input"

in

v
[v,vd,i,id]
no

no

gain
"gain"
real
1.0

no

yes

out_lower_limit
"output lower limit"
real

no

yes

limit_range

"upper & lower limit smoothing

real
1.0e-6

no

yes

out
"output"
out

%
[v,vd,i,id]
no

no

out_offset
"output offset"
real

0.0

no

yes

out_upper_limit
"output upper limit"
real

no

yes

range"

Description: The Differentiator block is a simple derivative stage that approximates the time
derivative of an input signal by calculating the incremental slope of that signal since the
previous time point. The block also includes gain and output offset parameters to allow
for tailoring of the required signal, and output upper and lower limits to prevent conver-
gence errors resulting from excessively large output values. The incremental value of
output below the output upper limit and above the output lower limit at which smoothing
begins is specified via the limit range parameter. In AC analysis, the value returned is
equal to the radian frequency of analysis multiplied by the gain.

8.2. ANALOG MODELS 205

Note that since truncation error checking is not included in the d_dt block, it is not rec-
ommended that the model be used to provide an integration function through the use of
a feedback loop. Such an arrangement could produce erroneous results. Instead, you
should make use of the "integrate" model, which does include truncation error checking
for enhanced accuracy.

Example SPICE Usage:
al2 7 12 slope_gen

.model slope_gen d_dt(out_offset=0.0 gain=1.0
+ out_lower_limit=1e-12 out_upper_limit=1lel2

+

8.2.17 Integrator

NAME_TABLE:

limit_range=1le-9)

C_Function_Name: cm_int

Spice_Model_Name: int

Description: "time-integration block"
PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0

Limits: - -

Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: out_lower_limit out_upper_limit
Description: "output lower limit" "output upper limit"
Data_Type: real real
Default_Value: - -

Limits: - -

Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

206

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Parameter_Name: limit_range

Description: "upper & lower limit smoothing range"
Data_Type: real

Default_Value: 1.0e-6

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

PARAMETER _TABLE:

Parameter_Name: out_ic

Description: "output initial condition"
Data_Type: real

Default_Value: 0.0

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Description: The Integrator block is a simple integration stage that approximates the integral

with respect to time of an input signal. The block also includes gain and input offset
parameters to allow for tailoring of the required signal, and output upper and lower limits
to prevent convergence errors resulting from excessively large output values. Note that
these limits specify integrator behavior similar to that found in an operational amplifier-
based integration stage, in that once a limit is reached, additional storage does not occur.
Thus, the input of a negative value to an integrator that is currently driving at the out
upper limit level will immediately cause a drop in the output, regardless of how long
the integrator was previously summing positive inputs. The incremental value of output
below the output upper limit and above the output lower limit at which smoothing begins
is specified via the limit range parameter. In AC analysis, the value returned is equal to
the gain divided by the radian frequency of analysis.

Note that truncation error checking is included in the int block. This should provide
for a more accurate simulation of the time integration function, since the model will
inherently request smaller time increments between simulation points if truncation errors
would otherwise be excessive.

Example SPICE Usage:

al3 7 12 time_count

.model time_count int(in_offset=0.0 gain=1.0

+ out_lower_limit=-1el2 out_upper_limit=1lel2
+ limit_range=1le-9 out_ic=0.0)

8.2.18 S-Domain Transfer Function

NAME_TABLE:

C_Function_Name: cm_s_xfer

Spice_Model _Name: s_xfer

Description: "s-domain transfer function"

PORT_TABLE:

8.2. ANALOG MODELS

Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:

in

"input"

in

v
[v,vd,i,id]
no

no

in_offset
"input offset"
real

0.0

no

yes

num_coeff

out
“output™
out

v
[v,vd,i,id]
no

no
gain
Ilgainll
real
1.0

no

yes

"numerator polynomial coefficients"

real

yes
[1 -]

no

den_coeff

"denominator polynomial coefficients"

real

yes
[1 -]

no

int_ic

"integrator stage initial conditions"

real

0.0

yes
den_coeff
yes

denormalized_freq

"denorm. corner freq.(radians) for 1 rad/s

real

207

coeffs"

208 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The s-domain transfer function is a single input, single output transfer function
in the Laplace transform variable ‘s’ that allows for flexible modulation of the frequency
domain characteristics of a signal. Ac and transient simulations are supported. The code
model may be configured to produce an arbitrary s-domain transfer function with the
following restrictions:

1. The degree of the numerator polynomial cannot exceed that
of the denominator polynomial in the variable "s".

2. The coefficients for a polynomial must be stated
explicitly. That is, if a coefficient is zero, it must be
included as an input to the num coeff or den coeff vector.

The order of the coefficient parameters is from that associated with the highest-powered term
decreasing to that of the lowest. Thus, for the coefficient parameters specified below, the equa-
tion in ‘s’ is shown:

.model filter s_xfer(gain=0.139713

+ num_coeff=[1.0 0.0 0.7464102]

+ den_coeff=[1.0 0.998942 0.001170077]
+ int_ic=[0 0])

It specifies a transfer function of the form

_ 5240.7464102
N(s) =0.139713 52+0.9989425+0.00117077

The s-domain transfer function includes gain and in_offset (input offset) parameters to allow
for tailoring of the required signal. There are no limits on the internal signal values or on
the output value of the s-domain transfer function, so you are cautioned to specify gain and
coefficient values that will not cause the model to produce excessively large values. In AC
analysis, the value returned is equal to the real and imaginary components of the total s-domain
transfer function at each frequency of interest.

The denormalized_freq term allows you to specify coefficients for a normalized filter (i.e. one
in which the frequency of interest is 1 rad/s). Once these coefficients are included, specifying
the denormalized frequency value ‘shifts’ the corner frequency to the actual one of interest. As
an example, the following transfer function describes a Chebyshev low-pass filter with a corner
(pass-band) frequency of 1 rad/s:

_ 1.0
N(s) =0.139713 - 52+1.097735+1.10251

In order to define an s_xfer model for the above, but with the corner frequency equal to 1500
rad/s (239 Hz), the following instance and model lines would be needed:

8.2. ANALOG MODELS 209

al2 nodel node2 chebyl
.model chebyl s_xfer(num_coeff=[1] den_coeff=[1 1.09773 1.10251]
+ int_ic=[0 0] denormalized_freq=1500)

In the above, you add the normalized coefficients and scale the filter through the use of the
denormalized freq parameter. Similar results could have been achieved by performing the de-
normalization prior to specification of the coefficients, and setting denormalized freq to the
value 1.0 (or not specifying the frequency, as the default is 1.0 rad/s) Note in the above that
frequencies are always specified as radians/second.

Truncation error checking is included in the s-domain transfer block. This should provide for
more accurate simulations, since the model will inherently request smaller time increments
between simulation points if truncation errors would otherwise be excessive.

The int_ic parameter is an array that must be of size one less as the array of values specified for
the den_coeff parameter. Even if a O start value is required, you have to add the specific int_ic
vector to the set of coefficients (see the examples above and below).

Example SPICE Usage:
ald 9 22 cheby_LP_3kHz

.model cheby_LP_3kHz s_xfer(in_offset=0.0 gain=1.0 int_ic=[0 0]
+ num_coeff=[1.0]
+ den_coeff=[1.0 1.42562 1.51620])

8.2.19 PWL Transfer Function

NAME_TABLE:

Spice_Model Name: xfer

C_Function_Name: cm_xfer

Description: "AC transfer function block"
PORT_TABLE:

Port_Name: in out
Description: "input"” "output"
Direction: in out
Default_Type: v %
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: table

Description: "PWL table: frequency/magnitude/phase"
Data_Type: real

Default_Value: 0

Limits: -

Vector: yes

Vector_Bounds: [3 -]

210

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

/* This is used internally to store the table in compact complex form.
STATIC_VAR _TABLE:

yes

file
"File in Touchstone format"
string

no

yes

roi

"table is in real/imaginary format"
boolean

false

no

yes

db

"table is in magnitude(dB)/phase format"
boolean

true

no

yes

rad

"phase in radians, not degrees"
boolean

false

no

yes

span offset

"Length of table rows" "Offset within row"
int int

3 1

[3 -] [1-]

no no

yes yes

*/

8.2. ANALOG MODELS 211

Static_Var_Name: table
Description: "Internal copy of data"
Data_Type: pointer

/* Only warn once about use in transient analysis. */
STATIC_VAR_TABLE:

Static_Var_Name: warned
Description: "Warning indicator"
Data_Type: int

This code model is useful only in AC analysis, where it applies a complex transfer function to its
input. The current circuit frequency is input to a PWL function defined by a table and the output
is produced by multiplying the input by the resulting complex number. The parameters supply
the PWL table and determine its format. The “table” parameter supplies the data directly, while
“file” defines a path (which must be all lower-case) to a file in Touchstone format containing
the data. Exactly one of those parameters must be specified.

The data is treated as consisting of rows, each of “span” real numbers. The first number is the
frequency of a PWL corner and a pair of numbers at the “offset” position in the row supply
the data. That allows a single Touchstone file to be shared by several instances of this code
model, as such files for an n-port device will contain logical rows of 2*n"2+1 numbers: one
frequency value and the components of an NxN complex matrix. The format of the data pairs
is determined by the “db”, “rad” and “r_i” parameters. If any of these are set, they override the
internal indicators in a Touchstone file which themselves override the parameter defaults.

Examples of using this model are in the examples/sp directory: netlist file.sp shows direct use,
while filter.sp uses the E-source wrapper (5.2.6).

8.2.20 Slew Rate Block

NAME_TABLE:

C_Function_Name: cm_slew

Spice_Model_Name: slew

Description: "A simple slew rate follower block"
PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v %
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: rise_slope

Description: "maximum rising slope value"
Data_Type: real

Default_Value: 1.0e9

Limits: -

Vector: no

212

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds:

Null_Allowed: yes
PARAMETER_TABLE:

Parameter_Name: fall_slope
Description: "maximum falling slope value"
Data_Type: real
Default_Value: 1.0e9

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes
PARAMETER_TABLE:

Parameter_Name: range
Description: "smoothing range"
Data_Type: real
Default_Value: 0.1

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Description: This function is a simple slew rate block that limits the absolute slope of the

output with respect to time to some maximum or value. The actual slew rate effects of
over-driving an amplifier circuit can thus be accurately modeled by cascading the ampli-
fier with this model. The units used to describe the maximum rising and falling slope
values are expressed in volts or amperes per second. Thus a desired slew rate of 0.5 V/us
will be expressed as 0.5e+6, etc.

The slew rate block will continue to raise or lower its output until the difference between
the input and the output values is zero. Thereafter, it will resume following the input sig-
nal, unless the slope again exceeds its rise or fall slope limits. The range input specifies
a smoothing region above or below the input value. Whenever the model is slewing and
the output comes to within the input + or - the range value, the partial derivative of the
output with respect to the input will begin to smoothly transition from 0.0 to 1.0. When
the model is no longer slewing (output = input), dout/din will equal 1.0.

Example SPICE Usage:
al5 1 2 slewl
.model slewl slew(rise_slope=0.5e6 fall_slope=0.5€6)

8.2.21 Inductive Coupling

NAME_TABLE:

C_Function_Name: cm_lcouple

Spice_Model_Name: lcouple

Description: "inductive coupling (for use with ’core’ model)"
PORT_TABLE:

Port_Name: 1 mmf_out

Description: "inductor"

"mmf output (in ampere-turns)"

8.2. ANALOG MODELS 213

Direction: inout inout
Default_Type: hd hd
Allowed_Types: [h,hd] [hd]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: num_turns

Description: "number of inductor turns"
Data_Type: real

Default_Value: 1.0

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Description: This function is a conceptual model that is used as a building block to create a
wide variety of inductive and magnetic circuit models. This function is normally used in
conjunction with the core model, but can also be used with resistors, hysteresis blocks,
etc. to build up systems that mock the behavior of linear and nonlinear components.

The Lcouple takes as an input (on the ‘U’ port), a current. This current value is multiplied
by the num_turns value, N, to produce an output value (a voltage value that appears on the
mmf_out port). The mmf_out acts similar to a magnetomotive force in a magnetic circuit;
when the Icouple is connected to the core model, or to some other resistive device, a
current will flow. This current value (which is modulated by whatever the Icouple is
connected to) is then used by the Lcouple to calculate a voltage ‘seen’ at the 1 port. The
voltage is a function of the derivative with respect to time of the current value seen at
mmf_out.

The most common use for Lcouples will be as a building block in the construction of
transformer models. To create a transformer with a single input and a single output, you
would require two lcouple models plus one core model. The process of building up
such a transformer is described under the description of the core model, below.

Example SPICE Usage:

al50 (7 0) (9 10) lcouplel
.model lcouplel lcouple(num_turns=10.0)

8.2.22 Magnetic Core

NAME_TABLE:

C_Function_Name: cm_core
Spice_Model_Name: core
Description: "magnetic core"
PORT_TABLE:

Port_Name: mc

Description: "magnetic core"
Direction: inout

Default_Type: gd

214 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Allowed_Types: [g,gd]
Vector: no
Vector_Bounds: -

Null_Allowed: no

PARAMETER_TABLE:

Parameter_Name: H_array B_array
Description: "magnetic field array" "flux density array"
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: yes yes
Vector_Bounds: [2 -] [2 -]
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: area length
Description: "cross-sectional area" "core length"
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: input_domain

Description: "input sm. domain"

Data_Type: real

Default_Value: 0.01

Limits: [le-12 0.5]

Vector: no

Vector_Bounds: -

Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: fraction

Description: "smoothing fraction/abs switch"
Data_Type: boolean

Default_Value: TRUE

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: mode

Description: "mode switch (1 = pwl, 2 = hyst)"
Data_Type: int

Default_Value: 1

Limits: [1 2]

Vector: no

Vector_Bounds: -

8.2. ANALOG MODELS

Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

yes

in_low

"input low value"
real

0.0

no

yes

hyst
"hysteresis"
real

0.1

[0 -]

no

yes

out_upper_limit

"output upper limit"

real
1.0

no

yes

215

in_high

"input high value"
real

1.0

no

yes

out_lower_limit
"output lower limit"
real

0.0

no

yes

Description: This function is a conceptual model that is used as a building block to create
a wide variety of inductive and magnetic circuit models. This function is almost always
expected to be used in conjunction with the Lcouple model to build up systems that mock
the behavior of linear and nonlinear magnetic components. There are two fundamental
modes of operation for the core model. These are the pwl mode (which is the default, and
which is the most likely to be of use to you) and the hysteresis mode. These are detailed

below.

PWL Mode (mode = 1)

The core model in PWL mode takes as input a voltage that it treats as a magnetomotive force
(mmf) value. This value is divided by the total effective length of the core to produce a value
for the Magnetic Field Intensity, H. This value of H is then used to find the corresponding Flux
Density, B, using the piecewise linear relationship described by you in the H array / B array
coordinate pairs. B is then multiplied by the cross-sectional area of the core to find the Flux
value, which is output as a current. The pertinent mathematical equations are listed below:

mmf

H= — where L = Length

216 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Here H, the Magnetic Field Intensity, is expressed in ampere-turns/meter.

B=f(H)

The B value is derived from a piecewise linear transfer function described to the model via
the (H_array[],B_array[]) parameter coordinate pairs. This transfer function does not include
hysteretic effects; for that, you would need to substitute a HYST model for the core.

¢ = BA, where A = Area

The final current allowed to flow through the core is equal to ¢. This value in turn is used by
the "lcouple" code model to obtain a value for the voltage reflected back across its terminals to
the driving electrical circuit.

The following example code shows the use of two lcouple models and one core model to
produce a simple primary/secondary transformer.

Example SPICE Usage:
al (2 0) (3 0) primary
.model primary lcouple (num_turns = 155)
a2 (3 4) iron_core

.model iron_core core (H_array

[-1000 -500 -375 -250 -188 -125 -63 0
63 125 188 250 375 500 1000]
[-3.13e-3 -2.63e-3 -2.33e-3 -1.93e-3
-1.5e-3 -6.25e-4 -2.5e-4 0 2.5e-4
6.25e-4 1.5e-3 1.93e-3 2.33e-3

2.63e-3 3.13e-3]

area = 0.01 length = 0.01)

a3 (5 0) (4 0) secondary
.model secondary lcouple (num_turns = 310)

B_array

+ 4+ + + + +

HYSTERESIS Mode (mode = 2)

The core model in HY STERESIS mode takes as input a voltage that it treats as a magnetomotive
force (mmf) value. This value is used as input to the equivalent of a hysteresis code model block.
The parameters defining the input low and high values, the output low and high values, and the
amount of hysteresis are as in that model. The output from this mode, as in PWL mode, is a
current value that is seen across the mc port. An example of the core model used in this fashion
is shown below:

Example SPICE Usage:

al (2 0) (3 0) primary

.model primary lcouple (num_turns = 155)
a2 (3 4) iron_core

8.2.

ANALOG MODELS 217
.model iron_core core (mode = 2 in_low=-7.0 in_high=7.0

+ out_lower_limit=-2.5e-4 out_upper_limit=2.5e-4
+ hyst = 2.3)

a3 (5 0) (4 0) secondary

.model secondary lcouple (num_turns = 310)

One final note to be made about the two core model nodes is that certain parameters are avail-

able in one mode, but not in the other. In particular, the in_low, in_high, out_lower_limit,
out_upper_limit, and hysteresis parameters are not available in PWL mode. Likewise, the
H_array, B_array, area, and length values are unavailable in HYSTERESIS mode. The input
domain and fraction parameters are common to both modes (though their behavior is somewhat
different; for explanation of the input domain and fraction values for the HY STERESIS mode,

you should refer to the hysteresis code model discussion).

8.2.23 Controlled Sine Wave Oscillator

NAME_TABLE:
C_Function_Name:
Spice_Model_Name:
Description:
PORT_TABLE:

Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE :
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

cm_sine
sine

"controlled sine wave oscillator"

cntl_in
"control input"
in

Vv

[v,vd,i,id]

no

no

cntl_array
"control array"
real

[0.0 1.0]

yes

[2 -]

yes

out_low

"output peak low value"
real

-1.0

no

yes

out
"output"
out

%
[v,vd,i,id]
no

no

freq_array
"frequency array"
real

[1.0e3 2.0e3]

[0 -]

yes

[2 -]

yes

out_high

"output peak high value"

real
1.0

no

yes

218 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description: This function is a controlled sine wave oscillator with parametrizable values of
low and high peak output. It takes an input voltage or current value. This value is used as
the independent variable in the piecewise linear curve described by the coordinate points
of the cntl array and freq array pairs. From the curve, a frequency value is determined,
and the oscillator will output a sine wave at that frequency. From the above, it is easy
to see that array sizes of 2 for both the cntl array and the freq array will yield a linear
variation of the frequency with respect to the control input. Any sizes greater than 2 will
yield a piecewise linear transfer characteristic. For more detail, refer to the description of
the piecewise linear controlled source, which uses a similar method to derive an output
value given a control input.

Example SPICE Usage:

asine 1 2 in_sine

.model in_sine sine(cntl_array = [-1 0 5 6]

+ freq_array=[10 10 1000 1000] out_low = -5.0
+ out_high = 5.0)

8.2.24 Controlled Triangle Wave Oscillator

NAME_TABLE:
C_Function_Name:
Spice_Model_Name:

cm_triangle
triangle

Description: "controlled triangle wave oscillator"
PORT_TABLE:

Port Name: cntl_in out
Description: "control input" “output"
Direction: in out
Default_Type: v %
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

PARAMETER _TABLE:

Parameter_Name: cntl_array freg_array
Description: "control array" "frequency array"
Data_Type: real real
Default_Value: [0.0 1.0] [1.0e3 2.0e3]
Limits: - [0 -]

Vector: yes yes
Vector_Bounds: [2 -] cntl_array
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: out_low out_high
Description: "output peak low value" "output peak high value"
Data_Type: real real
Default_Value: -1.0 1.0

Limits: - -

Vector: no no

8.2. ANALOG MODELS 219

Vector_Bounds: - -

Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: duty_cycle

Description: "rise time duty cycle"
Data_Type: real

Default_Value: 0.5

Limits: [le-10 0.999999999]

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Description: This function is a controlled triangle/ramp wave oscillator with parametrizable

values of low and high peak output and rise time duty cycle. It takes an input voltage or
current value. This value is used as the independent variable in the piecewise linear curve
described by the coordinate points of the cntl_array and freq_array pairs.
From the curve, a frequency value is determined, and the oscillator will output a triangle
wave at that frequency. From the above, it is easy to see that array sizes of 2 for both the
cntl_array and the freq_array will yield a linear variation of the frequency with respect to
the control input. Any sizes greater than 2 will yield a piecewise linear transfer charac-
teristic. For more detail, refer to the description of the piecewise linear controlled source,
which uses a similar method to derive an output value given a control input.

Example SPICE Usage:

ain 1 2 rampl

.model rampl triangle(cntl_array = [-1 0 5 6]

+ freq_array=[10 10 1000 1000] out_low = -5.0
+ out_high = 5.0 duty_cycle = 0.9)

8.2.25 Controlled Square Wave Oscillator

NAME_TABLE:
C_Function_Name:
Spice_Model Name:

cm_square
square

Description: "controlled square wave oscillator"
PORT_TABLE:

Port Name: cntl_in out
Description: "control input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: cntl_array freg_array
Description: "control array" "frequency array"

Data_Type:

real

real

220 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Default_Value: [0.0 1.0] [1.0e3 2.0e3]
Limits: - [0 -]
Vector: yes yes
Vector_Bounds: [2 -] [2 -]
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: out_low out_high
Description: "output peak low value" "output peak high value"
Data_Type: real real
Default_Value: -1.0 1.0
Limits: - -

Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER. TABLE:

Parameter_Name: duty_cycle rise_time
Description: "duty cycle" "output rise time"
Data_Type: real real
Default_Value: 0.5 1.0e-9
Limits: [le-6 0.999999] -

Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: fall_time

Description: "output fall time"

Data_Type: real

Default_Value: 1.0e-9

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Description: This function is a controlled square wave oscillator with parametrizable values

of low and high peak output, duty cycle, rise time, and fall time. It takes an input voltage
or current value. This value is used as the independent variable in the piecewise linear
curve described by the coordinate points of the cntl_array and freq_array pairs. From the
curve, a frequency value is determined, and the oscillator will output a square wave at
that frequency.
From the above, it is easy to see that array sizes of 2 for both the cntl_array and the
freq_array will yield a linear variation of the frequency with respect to the control input.
Any sizes greater than 2 will yield a piecewise linear transfer characteristic. For more
detail, refer to the description of the piecewise linear controlled source, which uses a
similar method to derive an output value given a control input.

Example SPICE Usage:
ain 1 2 pulsel
.model pulsel square(cntl_array = [-1 0 5 6]

8.2. ANALOG MODELS

+

freq_array=[10 10 1000 1000] out_low =
out_high = 4.5 duty_cycle = 0.2
rise_time = le-6 fall_time = 2e-6)

8.2.26 Controlled One-Shot

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

Description:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:

cm_oneshot
oneshot
"controlled one-shot"

clk

"clock input"
in

Vv

[v,vd,i,id]
no

no

clear

"clear signal"
in

v

[v,vd,i,id]

no

yes

clk_trig

"clock trigger value
real

0.5

no

no

pos_edge_trig

"positive/negative edge

boolean
TRUE

no q

no

cntl_array

cntl_in
"control input"
in

v

[v,vd,i,id]

no

yes

out
"output™
out

\
[v,vd,i,id]
no

no

retrig

0.0

"retrigger switch"

boolean
FALSE

no

yes

trigger switch"

pw_array

221

222

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description:
Data_Type:
Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

"control array"
real

[0.0 1.0]
;es

;es
out_low

"output low value"
real
0.0

no

yes

fall_time

"output fall time"
real

1.0e-9

no

yes

rise_delay

"pulse width array"
real

[1.0e-6 0.9999999]
[0.00 -]

yes
cntl_array
yes
out_high

"output high value"
real
1.0

no

yes

rise_time

"output rise time"
real

1.0e-9

no

yes

"output delay from trigger"

real
1.0e-9

no

yes

fall_delay

"output delay from pw"

real
1.0e-9

no

yes

Description: This function is a controlled oneshot with parametrizable values of low and high
peak output, input trigger value level, delay, and output rise and fall times. It takes an
input voltage or current value. This value is used as the independent variable in the
piecewise linear curve described by the coordinate points of the cntl_array and pw_array

8.2. ANALOG MODELS 223

pairs. From the curve, a pulse width value is determined. The one-shot will output a
pulse of that width, triggered by the clock signal (rising or falling edge), delayed by the
delay value, and with specified rise and fall times. A positive slope on the clear input will
immediately terminate the pulse, which resets with its fall time.

From the above, it is easy to see that array sizes of 2 for both the cntl_array and the
pw_array will yield a linear variation of the pulse width with respect to the control input.
Any sizes greater than 2 will yield a piecewise linear transfer characteristic. For more
detail, refer to the description of the piecewise linear controlled source, which uses a
similar method to derive an output value given a control input.

Example SPICE Usage:

ain 1 2 3 4 pulse2

.model pulse2 oneshot(cntl_array = [-1 0 10 11]

pw_array=[le-6 le-6 le-4 le-4]

clk_trig = 0.9 pos_edge_trig = FALSE
out_low = 0.0 out_high = 4.5

rise_delay = 20.0e-9 fall_delay = 35.0e-9)

+ + + +

8.2.27 Capacitance Meter

NAME_TABLE:

C_Function_Name: cm_cmeter

Spice_Model_Name: cmeter

Description: "capacitance meter"
PORT_TABLE:

Port Name: in out
Description: "input" “output"
Direction: in out
Default_Type: v %
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: gain

Description: "gain"

Data_Type: real

Default_Value: 1.0

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Description: The capacitance meter is a sensing device that is attached to a circuit node and
produces as an output a scaled value equal to the total capacitance seen on its input mul-
tiplied by the gain parameter. This model is primarily intended as a building block for
other models that must sense a capacitance value and alter their behavior based upon it.

224 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Example SPICE Usage:
atestl 1 2 ctest
.model ctest cmeter(gain=1.0el2)

8.2.28 Inductance Meter

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

cm_lmeter
lmeter

Description: "inductance meter"

PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: gain

Description: "gain"

Data_Type: real

Default_Value: 1.0

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Description: The inductance meter is a sensing device that is attached to a circuit node and

produces as an output a scaled value equal to the total inductance seen on its input mul-
tiplied by the gain parameter. This model is primarily intended as a building block for
other models that must sense an inductance value and alter their behavior based upon it.

Example SPICE Usage:
atest2 1 2 ltest
.model ltest lmeter(gain=1.0e6)

8.2.29 Memristor

NAME_TABLE:

C_Function_Name: cm_memristor
Spice_Model_Name: memristor
Description: "Memristor Interface"
PORT_TABLE:

Port_Name: memris

Description: "memristor terminals"

8.2. ANALOG MODELS

Direction: inout

Default_Type: ad

Allowed_Types: [gd]

Vector: no

Vector_Bounds: -

Null_Allowed: no

PARAMETER_TABLE:

Parameter_Name: rmin rmax
Description: "minimum resistance" "maximum resistance"
Data_Type: real real
Default_Value: 10.0 10000.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: rinit vt
Description: "initial resistance" "threshold"
Data_Type: real real
Default_Value: 7000.0 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: alpha beta
Description: "model parameter 1" "model parameter 2"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

225

Description: The memristor is a two-terminal resistor with memory, whose resistance depends
on the time integral of the voltage across its terminals. rmin and rmax provide the lower
and upper limits of the resistance, rinit is its starting value (no voltage applied so far).
The voltage has to be above a threshold vt to become effective in changing the resistance.
alpha and beta are two model parameters. The memristor code model is derived from a
SPICE subcircuit published in [23].

Example SPICE Usage:

amen 1 2 memr

.model memr memristor (rmin=1k rmax=10k rinit=7k
+ alpha=0 beta=2el3 vt=1.6)

8.2.30 2D table model

NAME_TABLE:

226

C_Function_Name:
Spice_Model_Name:
Description:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

cm_table2D
table2D
"2D table model"

inx

"inputx"

in

v
[v,vd,i,id,vnam]
no

no

order
"order"
int

3

no

yes

offset
"offset"
real

0.0

no

yes

file
"file name"
string

iny

"inputy"

in

v
[v,vd,i,id,vnam]
no

no

verbose
"verbose"
int

0

no

yes
gain
Ilgainll
real
1.0

no

yes

"2D-table-model. txt"

no

yes

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

out
"output™
out

i
[v,vd,i,id]
no

no

Description: The 2D table model reads a matrix from file "file name" (default 2D-table-
model.txt) which has x columns and y rows. Each x,y pair, addressed by inx and iny,
yields an output value out. Linear interpolation is used for out, eno (essentially non
oscillating) interpolation for its derivatives. Parameters of fset (default 0) and gain (de-
fault 1) modify the output table values according to of fset + gain out. Parameter order
(default 3) influences the calculation of the derivatives. Parameter verbose (default 0)
yields test outputs, if set to 1 or 2. The table format is shown below. Be careful to include
the data point inx = 0, iny = 0 into your table, because ngspice uses these during . 0P com-
putations. The x horizontal and y vertical address values have to increase monotonically.

8.2. ANALOG MODELS

Table Example:
table source

¥ O *x 00 % *

-10123456

number of columns

(x)

number of rows (y)

X horizontal (column) address values (real numbers)

* y vertical (row) address values (real numbers)
-0.6 0 0.6 1.2 1.82.43.03.64.2

* table
10.90.80.70.60.50.40.3
11111111
11.21.41.61.822.22.4
11.522.533.544.5
123456738

12.545.57 8.510 11.5
135791113 15

13.56 8.5 11 13.5 16 18.5
147 10 13 16 19 22

Example SPICE Usage:
atab inx iny %id(outl out2) tabmod
.model tabmod table2d (offset=0.0 gain=1 order=3 file="table-simple.txt")

NAME_TABLE:
C_Function_Name:
Spice_Model_Name
Description:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:

8.2.31 3D table model

cm_table3D
table3D
"3D table model"

inx

"inputx"

in

v
[v,vd,i,id,vnam]
no

no

out
"output”
out

i

iny

"inputy"

in

v
[v,vd,i,id,vnam]
no

no

227

with output data (horizontally addressed by x, vertically by vy)

Description: The usage example consists of two input voltages referenced to ground and a
current source output with two floating nodes.

inz

"inputz"

in

v
[v,vd,i,id,vnam]
no

no

228 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Allowed_Types: [v,vd,i,id]

Vector: no

Vector_Bounds: -

Null_Allowed: no

PARAMETER_TABLE:

Parameter_Name: order verbose
Description: "order" "verbose"
Data_Type: int int
Default_Value: 3 0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: offset gain
Description: "offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: file

Description: "file name"
Data_Type: string

Default_Value: "3D-table-model. txt"
Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Description: The 3D table model reads a matrix from file "file name" (default 3D-table-
model.txt) which has x columns, y rows per table and z tables. Each x,y,z triple, ad-
dressed by inx, iny, and inz, yields an output value out. Linear interpolation is used
for out, eno (essentially non oscillating) interpolation for its derivatives. Parameters
offset (default 0) and gain (default 1) modify the output table values according to
of fset + gain out. Parameter order (default 3) influences the calculation of the deriva-
tives. Parameter verbose (default 0) yields test outputs, if set to 1 or 2. The table format
is shown below. Be careful to include the data point inx = 0, iny = 0, inz = 0 into your
table, because ngspice needs these to for the . OP calculation. The x horizontal, y vertical,
and z table address values have to increase monotonically.

Table Example:

* 3D table for nmos bsim 4, W=1Qum, L=0.13um
*X

39

*y

8.2. ANALOG MODELS 229

39

xZ

11

*X (drain voltage)

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 ...

xy (gate voltage)

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 ...

xz (substrate voltage)

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
xtable -1.8

-4.50688E-10 -4.50613E-10 -4.50601E-10 -4.50599E-10 ...
-4.49622E-10 -4.49267E-10 -4.4921E-10 -4.49202E-10 ...
-4.50672E-10 -4.49099E-10 -4.48838E-10 -4.48795E-10 ...
-4,55575E-10 -4.4953E-10 -4.48435E-10 -4.48217E-10 ...

xtable -1.6
-3.10015E-10 -3.09767E-10 -3.0973E-10 -3.09724E-10 ...
-3.09748E-10 -3.08524E-10 -3.08339E-10 -3.08312E-10 ...

xtable -1.4
-2.04848E-10 -2.04008E-10 -2.03882E-10 ...
-2.07275E-10 -2.03117E-10 -2.02491E-10 ...

Description:

The usage example simulates a NMOS transistor with independent drain, gate and bulk
nodes, referenced to source. Parameter gain may be used to emulate transistor width,
with respect to the table transistor.

Example SPICE Usage:

amosl %vd(d s) %vd(g s) %vd(b s) %id(d s) mostablel
.model mostablel table3d (offset=0.0 gain=0.5 order=3
+ verbose=1 file="table-3D-bsim4n.txt")

8.2.32 Simple Diode Model

NAME_TABLE:

C_Function_Name: cm_sidiode
Spice_Model _Name: sidiode
Description: "simple diode"
PORT_TABLE:

Port_Name: ds
Description: "diode port"
Direction: inout
Default_Type: gd
Allowed_Types: [gd]

Vector: no

230 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

Vector Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

no

ron
"resistance on-state"
real

1

[le-6 -]

no

yes

vTwd

"forward voltage"
real

0.

[0. -]

no

yes

ilimit

"limit of on-current"
real

1e30

[le-15 -]

no

yes

epsilon

"width quadrat. reg. 1"
real

0.

[0. -]

no

yes

rrev

"resistance in breakdown"

real
0.0

no

yes

£ roff is not given, ron is the default

roff

"resistance off-state"
real

1!

[le-12 -]

no

yes

vrev
"reverse breakdown voltage"
real

1le30

(0. -]

no

yes

revilimit

"limit of breakdown current"
real

1le30
[le-15 -]
no

yes
revepsilon

"width quadratic region 2"
real

0.
[0. -]
no

yes

8.2. ANALOG MODELS 231

This is a model for a simple diode. Three regions are modelled as linear I(V) curves: Reverse
(breakdown) current with Rrev starting at Vrev into the negative direction, Off current with
Roff between Vrev and Vfwd and an On region with Ron, staring at Vfwd. The interface
between the regions is described by a quadratic function, the width of the interface region is
determined by Revepsilon and Epsilon. Current limits in the reverse breakdown (Revilimit)
and in the forward (on) state (llimit) may be set. The interface is a tanh function. Thus the first
derivative of the I(V) curve is continuous. All parameter values are entered as positive numbers.
A diode capacitance is not modelled.

Example SPICE Usage:

al a k dsl

.model dsl sidiode(Roff=1000 Ron=0.7 Rrev=0.2 Vfwd=1l

+ Vrev=10 Revepsilon=0.2 Epsilon=0.2 Ilimit=7 Revilimit=7)

8.2.33 Analog delay

NAME_TABLE:
C_Function_Name:
Spice_Model_Name:

cm_delay
delay

Description: "analog delay line"

PORT_TABLE:

Port_Name: in out cntrl
Description: "input" "output" "control"
Direction: in out in
Default_Type: v % v
Allowed_Types: [v,vd,vnam] [v,vd] [v,vd,i,id]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: no no yes
PARAMETER_TABLE:

Parameter_Name: delay buffer_size
Description: "time delay" "size of delay buffer"
Data_Type: real int

Default_Value: 0.0 1024

Limits: - [1 -]

Vector: no no

Vector_Bounds: - -

Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: has_delay_cnt

Description: "controlled delay"

Data_Type: boolean

Default_Value: FALSE

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

PARAMETER_TABLE:

232

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Parameter_Name: delmin delmax
Description: "min delay" "max delay"
Data_Type: real real
Default_Value: 0 0

Limits: [0 -] [0 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description:

During a transient simulation the input voltage at node in and its associated time value
are stored in a ring buffer. buffer_size allows to set the size of the buffer, the default is
1024 time steps. There are two modes to read out the buffer contents with a delay and
obtain the delayed values at port out, determined by has_delay_cnt. If
has_delay_cnt is TRUE, then you may vary the delay time between delmin and
delmax by a control voltage between 0 and 1 at the input terminal cntrl. Parameter
delay is ignored. If has_delay_cnt has been set to FALSE, then the signal is delayed
by the time value given by delay .

Example SPICE Usage:

adelayl in out cntrl mydell
.model mydell delay(delay=2m buffer_size=2048)
adelay2 in out cntrl mydel2
.model mydel2 delay(has_delay_cnt=TRUE delmin=5u delmax=8u)

Due to the fact that time steps are not constant during a transient simulation, but optimized by
the simulator, the delayed values are sometimes slightly deviating from the original, depending
on the number of steps. So in a sinusoidal wave we will see a distortion < 0.3% for 1000 steps
per sin cycle.

8.2.34 Potentiometer

NAME_TABLE:

Spice_Model_Name: potentiometer
C_Function_Name: cm_potentiometer
Description: "potentiometer"
PORT_TABLE:

Port_Name: ro wiper
Description: "pot connection 0" "wiper contact"
Direction: inout inout
Default_Type: g g
Allowed_Types: [g] [g]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

PORT_TABLE:

8.2. ANALOG MODELS

233

Port_Name: ri

Description: "pot connection 1"
Direction: inout

Default_Type: g

Allowed_Types: [g]

Vector: no

Vector_Bounds: -

Null_Allowed: no

PARAMETER_TABLE:

Parameter_Name: position

Description: "position of wiper connection (0.0 to 1.0)"
Data_Type: real

Default_Value: 0.5

Limits: [0.0 1.0]

Vector: no

Vector_Bounds: -

Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: log r
Description: "log-linear switch" "total resistance"
Data_Type: boolean real
Default_Value: FALSE 1.0e5
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: log_multiplier

Description: "multiplier constant for log resistance"
Data_Type: real

Default_Value: 1.0

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Description:

A resistance potentiometer with three connections: r0, wiper , and rl. Parameter
position determines the lower and upper portions of the resistance. Rlower is located
between r0@ and wiper, Rupper between wiper and rl. If log is set to FALSE,
Rlower = position x r. If log is set to TRUE, then Rlower = rx 1~ Positionslog_multiplier
For Rupper we always have Rupper = r — Rlower. position <= 0 is resolved to
position = le — 9, position >= 1 is resolved to position = 0.999999999.

Example SPICE Usage:
Apot r@ w rl1 potmod
.model potmod potentiometer(position=0.45 r=1k log=FALSE log_multiplier=1)

234 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

8.3 Hybrid Models

The following hybrid models are supplied with XSPICE. The descriptions included below con-
sist of the model Interface Specification File and a description of the model’s operation. This
is followed by an example of a simulator-deck placement of the model, including the .MODEL
card and the specification of all available parameters.

A note should be made with respect to the use of hybrid models for other than simple digital-to-
analog and analog-to-digital translations. The hybrid models represented in this section address
that specific need, but in the development of user-defined nodes you may find a need to translate
not only between digital and analog nodes, but also between real and digital, real and int, etc.
In most cases such translations will not need to be as involved or as detailed as shown in the
following.

8.3.1 Digital-to-Analog Node Bridge

NAME_TABLE:

C_Function_Name: cm_dac_bridge

Spice_Model _Name: dac_bridge

Description: "digital-to-analog node bridge"
PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d v
Allowed_Types: [d] [v,vd,i,id,d]
Vector: yes yes
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: out_low

Description: "O-valued analog output"
Data_Type: real

Default_Value: 0.0

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: out_high

Description: "l-valued analog output"
Data_Type: real

Default_Value: 1.0

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

PARAMETER_TABLE:

8.3. HYBRID MODELS

Parameter_Name:

out_undef

input_load

Description: "U-valued analog output" "input load (F)"
Data_Type: real real
Default_Value: 0.5 1.0e-12

Limits: - -

Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: t_rise t_fall
Description: "rise time 0->1" "fall time 1->0"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9

Limits: - -

Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes

Description: The dac_bridge is the first of three node bridge devices designed to allow for
the ready transfer of digital information to analog values and back again. The second
device is the adc_bridge (which takes an analog value and maps it to a digital one).The
dac_bridge takes as input a digital value from a digital node. This value by definition
may take on only one of the values ‘0’, ‘1’ or ‘U’. The dac_bridge then outputs the value
out_low, out_high or out_undef, or ramps linearly toward one of these ‘final’ values
from its current analog output level. The speed at which this ramping occurs depends on
the values of t_rise and t_fall. These parameters are interpreted by the model such
that the rise or fall slope generated is always constant. Note that the dac_bridge includes
test code in its cfunc.mod file for determining the presence of the out_undef parameter. If
this parameter is not specified by you, and if out_high and out_low values are specified,
then out_undef is assigned the value of the arithmetic mean of out_high and out_low.
This simplifies coding of output buffers, where typically a logic family will include an
out_low and out_high voltage, but not an out_undef value. This model also posts an
input load value (in farads) based on the parameter input load.

Example SPICE Usage:

abridgel [7] [2] dacl

.model dacl dac_bridge(out_low = 0.7 out_high = 3.5 out_undef = 2.2
+ input_load = 5.0e-12 t_rise = 50e-9

+ t_fall = 20e-9)

8.3.2 Analog-to-Digital Node Bridge

NAME_TABLE:

C_Function_Name: cm_adc_bridge

Spice_Model _Name: adc_bridge

Description: "analog-to-digital node bridge"
PORT_TABLE:

Port Name: in out

236

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description: "input" "output"
Direction: in out
Default_Type: v d
Allowed_Types: [v,vd,i,id,d] [d]
Vector: yes yes
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: in_low

Description: "maximum 0-valued analog input"
Data_Type: real

Default_Value: 1.0

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: in_high

Description: "minimum 1-valued analog input"
Data_Type: real

Default_Value: 2.0

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: rise _delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The adc_bridge is one of three node bridge devices designed to allow for the
ready transfer of analog information to digital values and back again. The second de-
vice is the dac_bridge (which takes a digital value and maps it to an analog one). The
adc_bridge takes as input an analog value from an analog node. This value by definition
may be in the form of a voltage, or a current. If the input value is less than or equal
to in_low, then a digital output value of ‘O’ is generated. If the input is greater than or
equal to in_high, a digital output value of ‘1’ is generated. If neither of these is true, then
a digital ‘'UNKNOWN’ value is output. Note that unlike the case of the dac_bridge,
no ramping time or delay is associated with the adc_bridge. Rather, the continuous
ramping of the input value provides for any associated delays in the digitized signal.

Example SPICE Usage:
abridge2 [1] [8] adc_buff
.model adc_buff adc_bridge(in_low = 0.3 in_high = 3.5)

8.3. HYBRID MODELS 237

8.3.3 Bidirectional Analog/Digital Node Bridge

NAME_TABLE:

C_Function_Name: cm_bidi_bridge

Spice_Model _Name: bidi_bridge

Description: "bidirectional digital/analog node bridge"
PORT_TABLE:

Port_Name: a d

Description: "analog" "digital in/out"
Direction: inout inout
Default_Type: g d
Allowed_Types: [g, gd] [d]

Vector: yes yes
Vector_Bounds: [1 -] [1 -]
Null_Allowed: no no

/* The direction of the bridge ports may be controlled by digital inputs.
* with LOW selecting DAC behavior and HIGH selecting ADC.
* If null, or the value is UNKNOWN the bridge will be truly bi-directional.
x/

PORT_TABLE:

Port_Name: dir
Description: "direction"
Direction: in
Default_Type: d
Allowed_Types: [d]

Vector: yes
Vector_Bounds: -
Null_Allowed: yes

/* Alternatively, this parameter sets direction: 0-2 for DAC, ADC, ignore.
* Values 0/1 override the direction port.

x/
PARAMETER_TABLE:
Parameter_Name: direction input_load
Description: "force direction" "capacitive input load (F)"
Data_Type: int real
Default_Value: 2 1.0e-12
Limits: [0 2] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

/* Digital Output strength is 0 (strong, default) or 1 (resistive).
* Smooth controls use of smoothing functions, default is @ (no smoothing).
x/

PARAMETER _TABLE:

Parameter_Name: strength smooth
Description: "output strength" "smoothing level"
Data_Type: int int
Default_Value: 0 0

Limits: [0 2] [0 2]

238

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector:
Vector_Bounds:
Null_Allowed:

/* Analog thresholds, in_low may be greater than in-high, enabling hysteresis.

*/
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:

no no

yes yes

in_low

"maximum 0-valued analog input"
real

0.1

no

yes

in_high

"minimum 1-valued analog input"
real

0.9

no

yes

/* Analog maximum and minimum output voltages. */

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

out_low

"minimum analog output voltage for ’'ZERO' digital input"
real

0.0

no

yes

out_high

"maximum analog output voltage for 'ONE’' digital input"
real

3.3

no

yes

/* Analog maximum current. */

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:

drive_low drive_high

"max current to ground" "max current from supply"
real real

0.02 0.02

8.3. HYBRID MODELS

Limits:
Vector:
Vector_Bounds:
Null_Allowed:

no

yes

239

no

yes

/* Strong analog output cuts off smoothly at the voltage limits.
* Let vth = out_high - r_sth * drive_high.
* Then for input voltage v, with drive_high > v > vth,

* the maximum output current is (drive_high - v) / r_sth

*/
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

/* Resistive analog
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

r_stl
"low taper resistance"
real

/* Analog rise and fall times. x/

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

/* Digital rise and
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

20 20

[le-6 -] [le-6 -]

no no

yes yes

drive. x/

r_low r_high

"drive resistor to ground" "drive resistor to out_high"
real real

10000 10000

[le-6 -] [le-6 -]

no no

yes yes

t_rise t_fall

"rise time 0 -> 1" "fall time 1 -> 0"
real real

1.0e-9 1.0e-9

[le-12 -] [le-12 -]

no no

yes yes

fall delays. */

rise_delay fall_delay

"rise delay 0 -> 1" "fall delay 1 -> 0"
real real

1.0e-9 1.0e-9

[le-12 -] [le-12 -]

no no

yes yes

r_sth
"high taper resistance"
real

240 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description: The bidi_bridge is the third and most complex of three analog/digital node
bridges. It is capable of effectively simultaneous output to both analog and digital ports,
depending on the state of the other side. That requires the use of an analog transcon-
ductance port, which may cause convergence problems when there is high impedance
on a connected analog node. Non-zero values for the smooth parameter may be helpful
if such problems occur. For digital nodes that are always strongly driven but also have
digital inputs, the simpler dac_bridge may be preferred. Otherwise, bidi_bridge has
some additional features that may make it preferable to the other bridges. The analog
output characteristics change with the digital drive strength, with strong output behaving
similarly to a very crude model of a CMOS output driver. The low input threshold may
be higher than the high threshold, producing Schmitt Trigger behavior.

Example SPICE Usage:
abridge2 [1 2 3] [8 9 10] null bidi_buff
.model bidi buff bidi_bridge(in_low = 2 in_high = 1.5)

8.3.4 Controlled Digital Oscillator

NAME_TABLE:

C_Function_Name: cm_d_osc

Spice_Model_Name: d_osc

Description: "controlled digital oscillator"
PORT_TABLE:

Port Name: cntl_in out
Description: "control input" "output"
Direction: in out
Default_Type: v d
Allowed_Types: [v,vd,i,id] [d]

Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

PARAMETER _TABLE:

Parameter_Name: cntl_array freg_array
Description: "control array" "frequency array"
Data_Type: real real
Default_Value: [0.0 1.0] [1.0e6 2.0e6]
Limits: - [0 -]

Vector: yes yes
Vector_Bounds: [2 -] cntl_array
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: duty_cycle init_phase
Description: "duty cycle" "initial phase of output"
Data_Type: real real
Default_Value: 0.5 0

Limits:
Vector:
Vector_Bounds:

[le-6 0.999999]
no

[-180.0 +360.0]
no

8.3. HYBRID MODELS

Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

yes

rise_delay
"rise delay"
real

le-9

[0 -]

no

yes

yes

fall_delay
"fall delay"
real

le-9

[0 -]

no

yes

241

Description: The digital oscillator is a hybrid model that accepts as input a voltage or current.
This input is compared to the voltage-to-frequency transfer characteristic specified by the
cntl_array/freg_array coordinate pairs, and a frequency is obtained that represents a
linear interpolation or extrapolation based on those pairs. A digital time-varying signal is
then produced with this fundamental frequency.

The output waveform, which is the equivalent of a digital clock signal, has rise and fall
delays that can be specified independently. In addition, the duty cycle and the phase of
the waveform are also variable and can be set by you.

Example SPICE Usage:
a5 1 8 var_clock

.model var_clock d_osc(cntl_array = [-2 -1 1 2]

+ freg_array = [le3 1le3 10e3 10e3]

+ duty _cycle = 0.4 init _phase = 180.0
+ rise_delay = 10e-9 fall_delay=8e-9)

8.3.5 Node bridge from digital to real with enable

NAME_TABLE:
Spice_Model_Name: d_to_real
C_Function_Name: ucm_d_to_real

Description: "Node bridge from digital to real with enable"
PORT_TABLE:

Port_Name: in enable out

Description: "input" "enable" "output"”
Direction: in in out

Default_Type: d d real
Allowed_Types: [d] [d] [real]

Vector: no no no

Vector_Bounds: - - -

Null_Allowed: no yes no
PARAMETER_TABLE:

Parameter_Name: zero one delay
Description: "value for 0" "value for 1" "delay"
Data_Type: real real real
Default_Value: 0.0 1.0 le-9
Limits: - - [le-15 -]

242

8.3.6 A Z*%*-1 block working on real data

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector:
Vector_Bounds:
Null_Allowed:

NAME_TABLE:

Spice_Model_Name:

no

yes

no

yes

real_delay

C_Function_Name: ucm_real_delay

Description:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

in clk
"input" "clock"
in in

real d
[real] [d]

no no

no no
delay

"delay from clk to
real

le-9

[le-15 -]

no

yes

no

yes

"A Z *x -1 block working on real data"

out
"output"
out

real
[real]
no

no

out"

8.3.7 A gain block for event-driven real data

NAME_TABLE:

Spice_Model_Name:

C_Function_Name:
Description:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:

real_gain
ucm_real_gain

"A gain block for event-driven real data"

in
"input"
in

real
[real]
no

no

in_offset
"input offset"
real

out
"output™
out

real
[real]
no

no

gain
Ilgainll
real

out_offset
"output offset"
real

8.3. HYBRID MODELS 243

Default_Value: 0.0 1.0 0.0
Limits: - - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
PARAMETER_TABLE:

Parameter_Name: delay ic

Description: "delay" "initial condition"
Data_Type: real real

Default_Value: 1.0e-9 0.0

Limits: - -

Vector: no no

Vector_Bounds: - -

Null_Allowed: yes yes

8.3.8 Node bridge from real to analog voltage

NAME_TABLE:

Spice_Model_Name: real_to_v

C_Function_Name: ucm_real_to_v

Description: "Node bridge from real to analog voltage"
PORT_TABLE:

Port_Name: in out
Description: "input" "output"
Direction: in out
Default_Type: real v
Allowed_Types: [reall] [v, vd, i, id]
Vector: no no
Vector_Bounds: - -

Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: gain transition_time
Description: "gain" "output transition time"
Data_Type: real real
Default_Value: 1.0 le-9

Limits: - [le-15 -]
Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes

8.3.9 Controlled PWM Oscillator

NAME_TABLE:

Spice_Model_Name: d_pwm

C_Function_Name: cm_d_pwm

Description: "duty cycle controlled digital oscillator"
PORT_TABLE:

Port_Name: cntl_in out

244

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description: "control input" "output"
Direction: in out
Default_Type: v d
Allowed_Types: [v,vd,i,id] [d]

Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: cntl_array dc_array
Description: "control array" "duty cycle array"
Data_Type: real real
Default_Value: [-1 1] [0 1]
Limits: - [0 1]
Vector: yes yes
Vector_Bounds: [2 -] [2 -]
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: frequency init_phase
Description: "oscillator frequency" "initial phase of output"
Data_Type: real real
Default_Value: leb 0

Limits: [le-6 -] [-180.0 +360.0]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: le-9 le-9

Limits: [0 -] [0 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The digital pulse-width modulated oscillator is a hybrid model that accepts as
control input a voltage or current. This input is compared to the voltage-to-duty cycle
transfer characteristic specified by the cntl_array/dc_array coordinate pairs, and a
duty cycle is obtained that represents a linear interpolation or extrapolation based on
those pairs. A digital duty cycle-varying signal is then produced. The duty cycle is
limited between 0 and 1 (excluding the limits).

The digital output waveform has rise and fall delays that can be specified independently.
In addition, the oscillator frequency and the phase of the waveform are variable and user
selectable.

Example SPICE Usage:
a5 cin dout pwm_osc
.model pwm_osc d_pwm(cntl_array = [-2 -1.99 1.99 2]

8.4. DIGITAL MODELS 245

+ dc_array = [0.01 0.01 0.99 0.99]
+ frequency = 1.2Meg init_phase = 90.0
+ rise_delay = 10e-9 fall_delay=8e-9)

Currently there are some limits or bugs: a duty cycle < 1% or larger than 99% may generate
false output (e.g. a 50% duty cycle signal). Sometimes spurious missing pulses occur. To obtain
false results by extrapolation during evaluation of the cntl_array, it is recommended to force a
flat output if input signals are above or below the outer limits of the cntl_array data (see the
example shown above).

8.4 Digital Models

The following digital models are supplied with XSPICE. The descriptions included below con-
sist of a (sometimes abbreviated) model Interface Specification File and a description of the
model’s operation. This is followed by an example of a simulator-deck placement of the model,
including the .MODEL card and the specification of all available parameters. Note that these
models have not been finalized at this time.

Some information common to all digital models and/or digital nodes is included here. The fol-
lowing are general rules that should make working with digital nodes and models more straight-
forward:

1. All digital nodes are initialized to ZERO at the start of a simulation (i.e., when INIT=TRUE).
This means that a model need not post an explicit value to an output node upon initial-
ization if its output would normally be a ZERO (although posting such would certainly
cause no harm).

2. Digital nodes may have one out of twelve possible node values. See 8.6.1 for details.

3. Digital models typically have defined their rise and fall delays for their output signals. A
capacitive input load value may be defined as well to determine a load-dependent delay,
but is currently not used in any code model (see 24.7.1.5).

4. Several commands are available for outputting data, e.g. eprint, edisplay, and eprvcd.
Digital inputs may be read from files. Please see Chapt. 8.6.4 for more details.

5. Hybrid models (see Chapt. 8.3) provide an interface between the digital event driven
world and the analog world of ngspice to enable true mixed mode simulation.

There are some common parameters that are used by many of the digital models. To avoid
repetition they are omitted from the individual Interface Description Files listed here and their
availabilty is noted at the end of the file for each model. The common parameters are:

inertial_delay When this boolean parameter is set, output pulses that are shorter than the
current delay time for the port are suppressed, and the output remains unchanged un-
til the next state transition that completes its delay period. The default value is "false",
giving transport delay behavior: all changes reach the output. An interpreter variable,
digital_delay_type, can be used to override the default. A value of 1 changes the

246 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

default to "true"; 2 forces all relevant XSPICE elements to use transport delay; 3 forces
inertial delay.

This parameter is used by PSpice-compatible U-devices (10). In ngspice-40 these XSPICE
digital devices:

d_and, d_buffer, d_inverter, d_nand, d_nor, d_or, d_tristate, d_xnor, d_xor

have the inertial_delay parameter. When the circuits in the examples/digital/digital_devices
directory are run, subcircuits with PSpice U* device instances are translated to XSPICE
primitives. Also, .model statements are generated containing inertial_delay=true. This
causes the circuits to run with inertial delays (suppress glitches) rather than transport de-
lays (propagate glitches). Most digital simulators model gates using inertial delays.

If you run the examples in ngspice-39 and ngspice-40 then compare waveforms pro-
duced by circuits behav-tristate-pulse.cir and behav-283.cir, you will see how glitches
are suppressed by the inertial delay mechanism. To obtain transport delay behavior with
ngspice-40, add the following line:

set digital_delay_type=2

to the .spiceinit file in that directory.

family This is a string-valued parameter that has no effect on the model itself, but labels the
ports of instances of the model to guide the automatic bridging mechanism. See 8.7.

rise_delay The delay time between a change in a model’s internal state, as driven by its
inputs, and a change in output to digital one. This is used when there is only one output,
or they all have the same delays.

fall_delay Like rise_delay, but for transitions to zero.

input_load The capacitance of one or all digital inputs, in Farads. Code models may use the
TOTAL_LOAD macro to find the capacitative load on their outputs. However, the outputs
of models listed here do not respond to their loading. These models always drive outputs
strongly with the specified delays.

These common parameters appear in individual Interface Specification Files in these forms:

PARAMETER_TABLE:

Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

8.4. DIGITAL MODELS

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

8.4.1 Buffer

NAME_TABLE:

C_Function_Name:
Spice_Model_Name:

Description:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

input_load

247

"input load value (F)"

real
1.0e-12

no

yes

inertial_delay
"swallow short
boolean

false

no

yes

cm_d_buffer
d_buffer

family
"Logic family for bridging"
string

pulses"

no

yes

"digital one-bit-wide buffer"

in
"input"
in

d

[d]

no

no

time-delayed copy of its input.

Example SPICE Usage:

a6 1 8 buffl

.model buffl d_buffer(rise_delay

+

8.4.2 Inverter

NAME_TABLE:

input_load

out
“output™
out

d

[d]

no

no

Common parameters: inertial_delay, family, rise_delay, fall_delay, input_load.

Description: The buffer is a single-input, single-output digital buffer that produces as output a

0.5e-9 fall_delay = 0.3e-9
0.5e-12)

248

C_Function_Name:
Spice_Model_Name:
Description:
PORT_TABLE:

Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

cm_d_inverter
d_inverter

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

"digital one-bit-wide inverter"

in
"input"
in

d

[d]

no

no

out
"output"
out

d

[d]

no

no

Common parameters: inertial_delay, family, rise_delay, fall_delay, input_load.

Description: The inverter is a single-input, single-output digital inverter that produces as out-
put an inverted, time-delayed copy of its input.

Example SPICE Usage:
a6 1 8 invl

.model invl d_inverter(rise_delay

+

843 And

NAME_TABLE:
C_Function_Name:
Spice_Model_Name:
Description:
PORT_TABLE:

Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

input_load =
cm_d_and
d_and

"digital ‘and’ gate"

in
"input"
in

d

[d]

yes

[2 -]

no

0.5e-9 fall_delay = 0.3e-9
0.5e-12)

out
"output"
out

d

[d]

no

no

Common parameters: inertial_delay, family, rise_delay, fall_delay, input_load.

Description: The digital and gate is an n-input, single-output and gate that produces an active
‘1’ value if, and only if, all of its inputs are also ‘1’ values. If ANY of the inputs is a
‘0’, the output will also be a ‘0’; if neither of these conditions holds, the output will be

unknown.

Example SPICE Usage:
a6 [1 2] 8 andl

.model andl d_and(rise_delay
+ input_load

0.5e-12)

0.5e-9 fall_delay = 0.3e-9

8.4. DIGITAL MODELS 249

8.4.4 Nand
NAME_TABLE:
C_Function_Name: cm_d_nand
Spice_Model_Name: d_nand
Description: "digital ‘nand’ gate"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no

Common parameters: inertial_delay, family, rise_delay, fall_delay, input_load.

Description: The digital nand gate is an n-input, single-output nand gate that produces an
active ‘0’ value if and only if all of its inputs are ‘1’ values. If ANY of the inputsis a ‘0’,
the output will be a ‘1’; if neither of these conditions holds, the output will be unknown.

Example SPICE Usage:
a6 [1 2 3] 8 nandl
.model nandl d_nand(rise_delay

0.5e-9 fall_delay = 0.3e-9

+ input_load = 0.5e-12)

84.5 Or
NAME_TABLE:
C_Function_Name: cm_d_or
Spice_Model_Name: d_or
Description: "digital ‘or’ gate"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no

Common parameters: inertial_delay, family, rise_delay, fall_delay, input_load.

Description: The digital or gate is an n-input, single-output or gate that produces an active ‘1’
value if at least one of its inputs is a ‘1’ value. The gate produces a ‘0’ value if all inputs
are ‘0’; if neither of these two conditions holds, the output is unknown.

250

Example SPICE Usage:
a6 [1 2 3] 8 orl

.model orl d_or(rise_delay

+ input_load = 0.5e-12)
8.4.6 Nor

NAME_TABLE:

C_Function_Name: cm_d_nor

Spice_Model_Name: d_nor

Description: "digital ‘nor’ gate"

PORT_TABLE:

Port Name: in

Description: "input"

Direction: in

Default_Type: d

Allowed_Types: [d]

Vector: yes

Vector_Bounds: [2 -]

Null_Allowed: no

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

0.5e-9 fall_delay = 0.3e-9

out
"output"
out

d

[d]

no

no

Common parameters: inertial_delay, family, rise_delay, fall_delay, input_load.

Description: The digital nor gate is an n-input, single-output nor gate that produces an active
‘0’ value if at least one of its inputs is a ‘1’ value. The gate produces a ‘0’ value if all
inputs are ‘0’; if neither of these two conditions holds, the output is unknown.

Example SPICE Usage:

anorl2 [1 2 3 4] 8 norl2
.model norl2 d_nor(rise_delay = 0.5e-9 fall_delay = 0.3e-9
+ input_load = 0.5e-12)

8.4.7 Xor

NAME_TABLE:
C_Function_Name:
Spice_Model_Name:
Description:
PORT_TABLE:

Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

cm_d_xor
d_xor

"digital exclusive-or gate"

in
"input"
in

d

[d]

yes

[2 -]

no

out
“output™
out

d

[d]

no

no

8.4. DIGITAL MODELS 251

Common parameters: inertial_delay, family, rise_delay, fall_delay, input_load.

Description: The digital xor gate is an n-input, single-output xor gate that produces an active
‘1’ value if an odd number of its inputs are also ‘1’ values. The delays associated with an
output rise and those associated with an output fall may be specified independently. Note
also that to maintain the technology-independence of the model, any UNKNOWN input,
or any floating input causes the output to also go UNKNOWN.

Example SPICE Usage:
a9 [1 2] 8 xor3
.model xor3 d_xor(rise_delay

0.5e-9 fall_delay = 0.3e-9

+ input_load = 0.5e-12)

8.4.8 Xnor
NAME_TABLE:
C_Function_Name: cm_d_xnor
Spice_Model_Name: d_xnor
Description: "digital exclusive-nor gate"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no

Common parameters: inertial_delay, family, rise_delay, fall_delay, input_load.

Description: The digital xnor gate is an n-input, single-output xnor gate that produces an
active ‘0’ value if an odd number of its inputs are also ‘1’ values. It produces a ‘1’
output when an even number of ‘1’ values occurs on its inputs. Note also that to maintain
the technology-independence of the model, any UNKNOWN input, or any floating input
causes the output to also go UNKNOWN.

Example SPICE Usage:
a9 [1 2] 8 xnor3

.model xnor3 d_xnor(rise_delay = 0.5e-9 fall_delay = 0.3e-9

+ input_load = 0.5e-12)
8.4.9 Tristate

NAME_TABLE:

C_Function_Name: cm_d_tristate

Spice_Model_Name: d_tristate

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description: "digital tristate buffer"
PORT_TABLE:

Port Name: in enable out
Description: "input" "enable" "output"
Direction: in in out
Default_Type: d d d
Allowed_Types: [d] [d] [d]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: no no no
PARAMETER_TABLE:

Parameter_Name: delay

Description: "delay"

Data_Type: real

Default_Value: 1.0e-9

Limits: [1.0e-12 -]

Vector: no

Vector_Bounds: -

Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name:

enable_1load

Description: "enable load value (F)"
Data_Type: real

Default_Value: 1.0e-12

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Common parameters: inertial_delay, family, input_load.

Description: The digital tristate is a simple tristate gate that can be configured to allow for
open-collector behavior, as well as standard tristate behavior. The state seen on the input
line is reflected in the output. The state seen on the enable line determines the strength
of the output. Thus, a ONE forces the output to its state with a STRONG strength. A
ZERO forces the output to go to a HI_IMPEDANCE strength. The delays associated
with an output state or strength change cannot be specified independently, nor may they
be specified independently for rise or fall conditions; other gate models may be used to
provide such delays if needed. The model posts input and enable load values (in farads)
based on the parameters input load and enable. Note also that to maintain the technology-
independence of the model, any UNKNOWN input, or any floating input causes the out-
put to also go UNKNOWN. Likewise, any UNKNOWN input on the enable line causes
the output to go to an UNDETERMINED strength value.

Example SPICE Usage:

a9 1 2 8 tri7

.model tri7 d_tristate(delay = 0.5e-9 input_load = 0.5e-12
+ enable_load = 0.5e-12)

8.4. DIGITAL MODELS

8.4.10 Pullup

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

Description:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

cm_d_pullup
d_pullup
"digital pullup resistor"

out
"output"
out

d

[d]

no

no

load

"load value (F)"
real

1.0e-12

no

yes

253

Description: The digital pullup resistor is a device that emulates the behavior of an analog

resistance value tied to a high voltage level. The pullup may be used in conjunction
with tristate buffers to provide open-collector wired or constructs, or any other logical
constructs that rely on a resistive pullup common to many tristated output devices. The

model posts an input load value (in farads) based on the parameter load.

Example SPICE Usage:

a2 9 pullupl

.model pullupl d_pullup(load = 20.0e-12)

8.4.11 Pulldown

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

Description:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

cm_d_pulldown
d_pulldown

"digital pulldown resistor"

out
"output"
out

d

[d]

no

254 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds: -

Null_Allowed: no
PARAMETER_TABLE:

Parameter_Name: load
Description: "load value (F)"
Data_Type: real
Default_Value: 1.0e-12

Limits: -

Vector: no
Vector_Bounds: -

Null_Allowed: yes

Description: The digital pulldown resistor is a device that emulates the behavior of an analog
resistance value tied to a low voltage level. The pulldown may be used in conjunction
with tristate buffers to provide open-collector wired or constructs, or any other logical
constructs that rely on a resistive pulldown common to many tristated output devices.
The model posts an input load value (in farads) based on the parameter load.

Example SPICE Usage:

a4 9 pulldownl
.model pulldownl d_pulldown(load = 20.0e-12)

8.4.12 D Flip Flop

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

cm_d_dff
d_dff

Description: "digital d-type flip flop"
PORT_TABLE:

Port Name: data clk
Description: "input data" "clock"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PORT_TABLE:

Port Name: set reset
Description: "asynch. set" "asynch. reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PORT_TABLE:

Port Name: out Nout

8.4. DIGITAL MODELS

Description: "data output" "inverted data output”
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]

Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: clk_delay set_delay
Description: "delay from clk" "delay from set"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9

Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: reset_delay ic

Description: "delay from reset" "output initial state"
Data_Type: real int

Default_Value: 1.0e-9 0

Limits: [1.0e-12 -] [0 2]

Vector: no no

Vector_Bounds: - -

Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: data_load clk_load

Description: "data load value (F)" "clk load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12

Limits: - -

Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: set_load reset_load
Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12

Limits: - -

Vector: no no
Vector.Bounds: - -

Null_Allowed: yes yes

255

Common parameters: rise_delay, fall_delay.

Description: The digital d-type flip flop is a one-bit, edge-triggered storage element that will
store data whenever the clk input line transitions from low to high (ZERO to ONE). In

256 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

addition, asynchronous set and reset signals exist, and each of the three methods of chang-
ing the stored output of the d_dff have separate load values and delays associated with
them. Additionally, you may specify separate rise and fall delay values that are added to
those specified for the input lines; these allow for more faithful reproduction of the output
characteristics of different IC fabrication technologies.

Note that any UNKNOWN input on the set or reset lines immediately results in an UN-

KNOWN output.

Example SPICE Usage:
a7 123456 flopl
.model flopl d_dff(clk_delay = 13.0e-9 set_delay = 25.0e-9

+
+

8.4.13 JK Flip Flop

reset_delay = 27.0e-9 ic

fall_delay = 3e-9)

= 2 rise_delay = 10.0e-9

NAME_TABLE:

C_Function_Name: cm_d_jkff

Spice_Model _Name: d_jkff

Description: "digital jk-type flip flop"
PORT_TABLE:

Port Name: j k
Description: "j input” "k input"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PORT_TABLE:

Port Name: clk

Description: "clock"

Direction: in

Default_Type: d

Allowed_Types: [d]

Vector: no

Vector_Bounds: -

Null_Allowed: no

PORT_TABLE:

Port Name: set reset
Description: "asynchronous set" "asynchronous reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

PORT_TABLE:

8.4. DIGITAL MODELS

Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

out

"data output”
out

d

[d]

no

yes

clk_delay

"delay from clk"
real

1.0e-9

[1.0e-12 -]

no

yes

reset_delay

"delay from reset"
real

1.0e-9

[1.0e-12 -]

no

yes

jk_load
"j,k load values (F)"
real

1.0e-12
0

;es
set_load

"set load value (F)"
real
1.0e-12

no

yes

Common parameters: rise_delay, fall_delay.

Description: The digital jk-type flip flop is a one-bit, edge-triggered storage element that will
store data whenever the clk input line transitions from low to high (ZERO to ONE).

Nout

"inverted data output"
out

d

[d]

no

yes

set_delay

"delay from set"
real

1.0e-9

[1.0e-12 -]

no

yes

ic

"output initial state"
int

0

[0 2]

no

yes

clk_load

"clk load value (F)"
real

1.0e-12

no

yes

reset_load
"reset load (F)"
real

1.0e-12

no

yes

258

8.4.14 Toggle Flip Flop

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

In addition, asynchronous set and reset signals exist, and each of the three methods of
changing the stored output of the d_jkff have separate load values and delays associated
with them. Additionally, you may specify separate rise and fall delay values that are
added to those specified for the input lines; these allow for more faithful reproduction of

the output characteristics of different IC fabrication technologies.

Note that any UNKNOWN inputs other than j or k cause the output to go UNKNOWN

automatically.

Example SPICE Usage:

a8 123456 7 flop2
.model flop2 d_jkff(clk_delay = 13.0e-9 set_delay = 25.0e-9

+
+

NAME_TABLE:

C_Function_Name:
Spice_Model_Name:

Description:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:

Allowed_Types:

Vector:

Vector_Bounds:

Null_Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:

Allowed_Types:

Vector:

Vector_Bounds:

Null_Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:

Allowed_Types:

Vector:

Vector_Bounds:

Null_Allowed:

PARAMETER_TABLE:

reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9
fall_delay = 3e-9)

cm_d_tff
d_tff

"digital toggle flip flop"

t

"toggle input"
in

d

[d]

no

no

set
"set"
in

d

[d]
no

yes

out

"data output”
out

d

[d]

no

yes

clk
"clock"
in

d

[d]

no

no

reset
"reset"
in

d

[d]

no

yes

Nout

"inverted data output"
out

d

[d]

no

yes

8.4. DIGITAL MODELS 259

Parameter_Name: clk_delay set_delay
Description: "delay from clk" "delay from set"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9

Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no

Vector_Bounds - -

Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: reset_delay ic

Description: "delay from reset" "output initial state"
Data_Type: real int
Default_Value: 1.0e-9 0

Limits: [1.0e-12 -] [0 2]

Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: t_load clk_load
Description: "toggle load value (F)" "clk load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12

Limits: - -

Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: set_load reset_load
Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default.Value: 1.0e-12 1.0e-12

Limits: - -

Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes

Common parameters: rise_delay, fall_delay.

Description: The digital toggle-type flip flop is a one-bit, edge-triggered storage element that
will toggle its current state whenever the clk input line transitions from low to high (ZERO
to ONE). In addition, asynchronous set and reset signals exist, and each of the three meth-
ods of changing the stored output of the d_tff have separate load values and delays asso-
ciated with them. Additionally, you may specify separate rise and fall delay values that
are added to those specified for the input lines; these allow for more faithful reproduction
of the output characteristics of different IC fabrication technologies.

Note that any UNKNOWN inputs other than t immediately cause the output to go UN-
KNOWN.

Example SPICE Usage:

260

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

a8 2 12 45 6 3 flop3
.model flop3 d_tff(clk_delay = 13.0e-9 set_delay = 25.0e-9

+
+

reset_delay = 27.0e-9 ic
fall_delay = 3e-9 t_load

8.4.15 Set-Reset Flip Flop

NAME_TABLE:

C_Function_Name:
Spice_Model_Name:

Description:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

cm_d_srff
d_srff

= 2 rise_delay = 10.0e-9
0.2e-12)

"digital set-reset flip flop"

s
"set input”
in

d

[d]

no

no

clk
"clock"
in

[d]
no

no

set

"asynchronous set"

in
d
[d]
no

yes

out

"data output”
out

d

[d]

no

yes

r
"reset input"
in

d

[d]

no

no

reset

"asynchronous reset"
in

d

[d]

no

yes

Nout

"inverted data output"
out

d

[d]

no

yes

8.4. DIGITAL MODELS

Parameter_Name: clk_delay set_delay
Description: "delay from clk" "delay from set"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9

Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes

PARAMETER _TABLE:

Parameter_Name: reset_delay ic

Description: "delay from reset" "output initial state"
Data_Type: real int
Default_Value: 1.0e-9 0

Limits: [1.0e-12 -] [0 2]

Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: sr_load clk_load
Description: "set/reset loads (F)" "clk load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12

Limits: - -

Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: set_load reset_load
Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12

Limits: - -

Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes

Common parameters: rise_delay, fall_delay.

Description: The digital sr-type flip flop is a one-bit, edge-triggered storage element that will
store data whenever the clk input line transitions from low to high (ZERO to ONE). The
value stored (i.e., the out value) will depend on the s and r input pin values, and will be:

out=0NE

out=ZERO
out=previous value
out=UNKNOWN

if s=0ONE and r=ZERO;
if s=ZERO and r=0NE;
if s=ZERO and r=ZERO;
if s=0ONE and r=0NE;

In addition, asynchronous set and reset signals exist, and each of the three methods of changing
the stored output of the d_srff have separate load values and delays associated with them. You

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

may also specify separate rise and fall delay values that are added to those specified for the
input lines; these allow for more faithful reproduction of the output characteristics of different
IC fabrication technologies.

Note that any UNKNOWN inputs other than s and r immediately cause the output to go UN-
KNOWN.

Example SPICE Usage:

a8 2 12 45 6 3 14 flop7
.model flop7 d_srff(clk_delay = 13.0e-9 set_delay = 25.0e-9

+
+

8.4.16 D Latch

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

Description:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:

reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9

fall_delay = 3e-9)

cm_d_dlatch
d_dlatch
"digital d-type latch"

data enable
"input data" "enable input"
in in

d d

[d] [d]

no no

no no

set reset
Ilsetll n l,.eseT:ll
in in

d d

[d] [d]

no no

yes yes

out Nout
"data output" "inverter data output"
out out

d d

[d] [d]

no no

no no

data_delay

8.4. DIGITAL MODELS

Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

"delay from data"
real

1.0e-9

[1.0e-12 -]

no

yes

enable_delay

"delay from enable"
real

1.0e-9

[1.0e-12 -]

no

yes

reset_delay
"delay from RESET"
real

1.0e-9
[1.0e-12 -]
no

yes
data_load
"data load (F)"
real
1.0e-12

no

yes
set_load

"set load value (F)"
real
1.0e-12

no

yes

Common parameters: rise_delay, fall_delay.

263

set_delay

"delay from SET"
real

1.0e-9

[1.0e-12 -]

no

yes

ic

"output initial state"
boolean

0

no

yes

enable_load

"enable load value (F)"
real

1.0e-12

no

yes

reset_load
"reset load (F)"
real

1.0e-12

no

yes

Description: The digital d-type latch is a one-bit, level-sensitive storage element that will out-
put the value on the data line whenever the enable input line is high (ONE). The value on

264

8.4.17 Set-Reset Latch

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

the data line is stored (i.e., held on the out line) whenever the enable line is low (ZERO).
In addition, asynchronous set and reset signals exist, and each of the four methods of
changing the stored output of the d_dlatch (i.e., data changing with enable=ONE, enable
changing to ONE from ZERO with a new value on data, raising set and raising reset) have
separate delays associated with them. You may also specify separate rise and fall delay
values that are added to those specified for the input lines; these allow for more faithful
reproduction of the output characteristics of different IC fabrication technologies.

Note that any UNKNOWN inputs other than on the data line when enable=ZERO imme-

diately cause the output to go UNKNOWN.

Example SPICE Usage:

a4 12 4 5 6 3 14 latchl

.model latchl d_dlatch(data_delay = 13.0e-9 enable_delay = 22.0e-9

+
+
+

NAME_TABLE:

C_Function_Name:
Spice_Model_Name:

Description:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:

Allowed_Types:

Vector:

Vector_Bounds:

Null_Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:

Allowed_Types:

Vector:

Vector_Bounds:

Null_Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:

Allowed_Types:

Vector:

set_delay = 25.0e-9
reset_delay = 27.0e-

rise_delay = 10.0e-9 fall_delay = 3e-9)

cm_d_srlatch
d_srlatch
"digital sr-type latch"

s
"set"
in

d

[d]
no

no

enable
"enable"
in

d

[d]

no

no

set
"Set"
in

[d]

no

9 ic =

r
"reset"
in

d

[d]

no

no

reset
"reset"
in

[d]

no

2

8.4. DIGITAL MODELS

Vector_Bounds:
Null_Allowed:
PORT_TABLE:

Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector: no no
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:

yes

out

"data output”
out

d

[d]

no

sr_delay

yes

Nout

265

"inverted data output"

out
d
[d]

no

"delay from s or r input change"

real

1.0e-9
[1.0e-12 -]
no

yes

enable_delay

"delay from enable"
real

1.0e-9

[1.0e-12 -]

no

yes

reset_delay

"delay from RESET"
real

1.0e-9

[1.0e-12 -]

no

yes

sr_load

"s & r input loads (F)"

real
1.0e-12

no

yes

set_delay

"delay from SET"
real

1.0e-9

[1.0e-12 -]

no

yes

ic

"output initial state"

boolean
0

no

yes

enable_load
"enable load value
real

1.0e-12

no

yes

266 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Parameter_Name: set_load reset_load
Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12

Limits: - -

Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes

Common parameters: rise_delay, fall_delay.

Description: The digital sr-type latch is a one-bit, level-sensitive storage element that will
output the value dictated by the state of the s and r pins whenever the enable input line
is high (ONE). This value is stored (i.e., held on the out line) whenever the enable line is
low (ZERO). The particular value chosen is as shown below:

s=ZERO, r=ZERO => out=current value (i.e., not change in output)
s=ZER0, r=0NE => out=ZERO
s=0NE, r=ZERO => out=0NE
s=0NE, r=0NE => out=UNKNOWN

Asynchronous set and reset signals exist, and each of the four methods of changing the stored
output of the d srlatch (i.e., s/r combination changing with enable=ONE, enable changing to
ONE from ZERO with an output-changing combination of s and r, raising set and raising re-
set) have separate delays associated with them. You may also specify separate rise and fall
delay values that are added to those specified for the input lines; these allow for more faithful
reproduction of the output characteristics of different IC fabrication technologies.

Note that any UNKNOWN inputs other than on the s and r lines when enable=ZERO immedi-
ately cause the output to go UNKNOWN.

Example SPICE Usage:
a4 12 4 5 6 3 14 16 latch2

.model latch2 d_srlatch(sr_delay = 13.0e-9 enable_delay = 22.0e-9
+ set_delay = 25.0e-9

+ reset_delay = 27.0e-9 ic = 2

+ rise_delay = 10.0e-9 fall_delay = 3e-9)

8.4.18 State Machine

NAME_TABLE:

C_Function_Name: cm_d_state
Spice_Model_Name: d_state

Description: "digital state machine"
PORT_TABLE:

Port Name: in clk

Description: "input" "clock"

8.4. DIGITAL MODELS

Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

in

d

[d]
yes
[1 -]
yes

reset
"reset"
in

d

[d]

no

yes

clk_delay

"delay from CLK"
real

1.0e-9

[1.0e-12 -]

no

yes
Parameter_Name:

"state transition specification file name"

string
"state.txt"

no

yes

reset_state

in

[d]
no

no

out
"output™
out

d

[d]

yes

[1 -]

no

reset_delay

"delay from RESET"
real

1.0e-9

[1.0e-12 -]

no

yes

state_file

"default state on RESET & at DC"

int
0

no

yes

clk_1load

"clock loading capacitance (F)

real
1.0e-12

no

267

268

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds: -

Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: reset_load

Description: "reset loading capacitance (F)"
Data_Type: real

Default_Value: 1.0e-12

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Common parameters: input_load.

Description: The digital state machine provides for straightforward descriptions of clocked

combinational logic blocks with a variable number of inputs and outputs and with an
unlimited number of possible states. The model can be configured to behave as virtually
any type of counter or clocked combinational logic block and can be used to replace very
large digital circuit schematics with an identically functional but faster representation.
The d state model is configured through the use of a state definition file (state.in) that
resides in a directory of your choosing. The file defines all states to be understood by the
model, plus input bit combinations that trigger changes in state. An example state.in file
is shown below:

----------- begin file -------------

* This is an example state.in file. This file

* defines a simple 2-bit counter with one input. The

* value of this input determines whether the counter counts
* up (in = 1) or down (in = 0).

0

0s 0s 0 -> 3
1 ->1
10s1z0 ->0
1 ->2
212050 ->1
1 ->3
31z 1z 0 -> 2
312121 ->0

Several attributes of the above file structure should be noted. First, all lines in the file must be
one of four types. These are

1. A comment, beginning with a ‘*’ in the first column.

2. A header line, which is a complete description of the current state, the outputs corre-

sponding to that state, an input value, and the state that the model will assume should that
input be encountered. The first line of a state definition must always be a header line.

8.4. DIGITAL MODELS 269

3. A continuation line, which is a partial description of a state, consisting of an input value
and the state that the model will assume should that input be encountered. Note that
continuation lines may only be used after the initial header line definition for a state.

4. A line containing nothing but white-spaces (space, form-feed, newline, carriage return,
tab, vertical tab).

A line that is not one of the above will cause a file-loading error. Note that in the example
shown, whitespace (any combination of blanks, tabs, commas) is used to separate values, and
that the character -> is used to underline the state transition implied by the input preceding it.
This particular character is not critical in of itself, and can be replaced with any other character
or non-broken combination of characters that you prefer (e.g. ==>, >>, ’:’, resolves_to, etc.)

The order of the output and input bits in the file is important; the first column is always inter-
preted to refer to the ’zeroth’ bit of input and output. Thus, in the file above, the output from
state 1 sets out[0] to Os, and out[1] to 1z.

The state numbers need not be in any particular order, but a state definition (which consists of
the sum total of all lines that define the state, its outputs, and all methods by which a state can
be exited) must be made on contiguous line numbers; a state definition cannot be broken into
sub-blocks and distributed randomly throughout the file. On the other hand, the state definition
can be broken up by as many comment lines as you desire.

Header files may be used throughout the state.in file, and continuation lines can be discarded
completely if you so choose: continuation lines are primarily provided as a convenience.

Example SPICE Usage:

ad [2 34 5] 1 12 [22 23 24 25 26 27 28 29] statel

.model statel d_state(clk_delay = 13.0e-9 reset_delay = 27.0e-9

+ state_file = "newstate.txt" reset_state = 2)

Note: The file named by the parameter filename in state_file="filename" is sought after
according to a search list described in8.1.3.

8.4.19 Frequency Divider

NAME_TABLE:

C_Function_Name: cm_d_fdiv

Spice_Model_Name: d_fdiv

Description: "digital frequency divider"
PORT_TABLE:

Port Name: freg_in freg_out
Description: "frequency input" "frequency output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

PARAMETER_TABLE:

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

div_factor
"divide factor"
int

2

[1 -]

no

yes

i_count

high_cycles

"# of cycles for high out"
int

1

[1 div_factor-1]

no

yes

"divider initial count value"

int
0

no

yes

freqg_in_load

"freq_in load value (F)"

real
1.0e-12

no

yes

Common parameters: rise_delay, fall_delay.

Description: The digital frequency divider is a programmable step-down divider that accepts

an arbitrary divisor (div_factor), a duty-cycle term (high_cycles), and an initial count
value (i_count). The generated output is synchronized to the rising edges of the input

signal.

Example SPICE Usage:

a4 3 7 divider

.model divider d_fdiv(div_factor = 5 high_cycles = 3
i_count = 4 rise_delay = 23e-9

+
+

8420 RAM
NAME_TABLE:

C_Function_Name:

Spice_Model_Name:

Description:
PORT_TABLE:
Port Name:

fall_delay = 9e-9)

cm_d_ram
d_ram

"digital random-access memory"

data_in

data_out

8.4. DIGITAL MODELS

Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:

271

"data input line(s)" "data output line(s)"

in out

d d

[d] [d]

yes yes

[1 -] data_in
no no
address write_en
"address input line(s)" "write enable line"
in in

d d

[d] [d]
yes no

[1 -] -

no no
select

"chip select line(s)"

in

d

[d]

yes

[1 16]

no

select_value

"decimal active value for select line comparison"
int

1

[0 327671

no

yes

ic

"initial bit state @ dc"
int

2

[0 2]

no

yes

read_delay

"read delay from address/select/write.en active"
real

100.0e-9

272

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

[1.0e-12 -]

no

yes

data_load

"data_in load value (F)"
real

1.0e-12

no

yes

select_load

"select load value (F)"
real

1.0e-12

no

yes

enable_1load

"enable line load value
real

1.0e-12

no

yes

address_load

"addr. load value (F)"
real

1.0e-12

no

yes

Description: The digital RAM is an M-wide, N-deep random access memory element with

programmable select lines, tristated data out lines, and a single write/~read line. The
width of the RAM words (M) is set through the use of the word width parameter. The
depth of the RAM (N) is set by the number of address lines input to the device. The value
of N is related to the number of address input lines (P) by the following equation:

2P— N

There is no reset line into the device. However, an initial value for all bits may be specified
by setting the ic parameter to either O or 1. In reading a word from the ram, the read delay
value is invoked, and output will not appear until that delay has been satisfied. Separate
rise and fall delays are not supported for this device.

Note that UNKNOWN inputs on the address lines are not allowed during a write. In the
event that an address line does indeed go unknown during a write, the entire contents
of the ram will be set to unknown. This is in contrast to the data in lines being set to
unknown during a write; in that case, only the selected word will be corrupted, and this is
corrected once the data lines settle back to a known value. Note that protection is added

8.4. DIGITAL MODELS 273

to the write en line such that extended UNKNOWN values on that line are interpreted as
ZERO values. This is the equivalent of a read operation and will not corrupt the contents
of the RAM. A similar mechanism exists for the select lines. If they are unknown, then it
is assumed that the chip is not selected.

Detailed timing-checking routines are not provided in this model, other than for the enable
delay and select delay restrictions on read operations. You are advised, therefore, to
carefully check the timing into and out of the RAM for correct read and write cycle
times, setup and hold times, etc. for the particular device they are attempting to model.

Example SPICE Usage:
a4 [3456] [3456] [12 13 14 15 16 17 18 19] 30 [22 23 24] ram2
.model ram2 d_ram(select_value = 2 ic = 2 read_delay = 80e-9)

8.4.21 Digital Source

NAME_TABLE:

C_Function_Name:

Spice_Model_Name:

cm_d_source
d_source

Description: "digital signal source"
PORT_TABLE:

Port Name: out

Description: "output"

Direction: out

Default_Type: d

Allowed_Types: [d]

Vector: yes

Vector_Bounds: -

Null_Allowed: no

PARAMETER_TABLE:

Parameter_Name: input_file

Description: "digital input vector filename"
Data_Type: string

Default_Value: "source.txt"

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Common parameters: input_load.

Description: The digital source provides for straightforward descriptions of digital signal vec-
tors in a tabular format. The model reads input from the input file and, at the times
specified in the file, generates the inputs along with the strengths listed. The format of
the input file is as shown below. Note that comment lines are delineated through the use
of a single ‘*’ character in the first column of a line. This is similar to the way the SPICE
program handles comments.

274 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

* T cC n n n

* 1 1L o o o

* m o d d d
* e cC e e e

* k a b c. .
0.0000 Uu Uu Us Uu .
1.234e-9 0s 1s 1ls 0z .
1.376e-9 0s 0s 1s 0z .
2.5e-7 1s 0s 1s 0z .
2.5006e-7 1s 1s 1s 0z .
5.0e-7 0s 1s 1s 0z .

Note that in the example shown, whitespace (any combination of blanks, tabs, commas) is used
to separate the time and state/strength tokens. The order of the input columns is important; the
first column is always interpreted to mean ‘time’. The second through the N’th columns map
to the out[0] through out[N-2] output nodes. A non-commented line that does not contain
enough tokens to completely define all outputs for the digital source will cause an error. Also,
time values must increase monotonically or an error will result in reading the source file.

Errors will also occur if a line exists in source.txt that is neither a comment nor vector line.
The only exception to this is in the case of a line that is completely blank; this is treated as
a comment (note that such lines often occur at the end of text within a file; ignoring these in
particular prevents nuisance errors on the part of the simulator).

Example SPICE Usage:
a3 [234567 8910 11 12 13 14 15 16 17] input_vector
.model input_vector d_source(input_file = "source_simple.text")

Note: The file named by the parameter filename in input_file="filename" is sought after
according to a search list described in8.1.3.

8.4.22 LUT

NAME_TABLE:
C_Function_Name: cm_d_1lut
Spice_Model_Name: d_Tlut

Description: "digital n-input look-up table gate"
PORT_TABLE:

Port_Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [1 -] -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: table_values

8.4. DIGITAL MODELS 275

Description: "lookup table values"
Data_Type: string

Default_Value: -

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: no

Common parameters: rise_delay, fall_delay, input_load.

Description: The lookup table provides a way to map any arbitrary n-input, 1-output combi-
national logic block to XSPICE. The inputs are mapped to the output using a string of
length 2”n. The string may contain values "0", "1" or "X", corresponding to an output of
low, high, or unknown, respectively. The outputs are only mapped for inputs which are
valid logic levels. Any unknown bit in the input vector will always produce an unknown
output. The first character of the string table_values corresponds to all inputs value
zero, and the last (2”n) character corresponds to all inputs value one, with the first signal
in the input vector being the least significant bit. For example, a 2-input lookup table
representing the function (A x B) (that is, A AND B), with input vector [A B] can be
constructed with a table_values string of "0001"; function (~A * B) with input vector
[A B] can be constructed with a table_values string of "0010".

Example SPICE Usage:

* LUT encoding 3-bit parity function

a4 [1 2 3] 5 lut_pty3_1

.model lut_pty3_1 d_lut(table_values = "01101001"
+ input_load 2.0e-12)

8.4.23 General LUT

NAME_TABLE:

C_Function_Name: cm_d_genlut

Spice_Model_Name: d_genlut

Description: "digital n-input x m-output look-up table gate"
PORT_TABLE:

Port_Name: in out

Description: "input" "output"
Direction: in out

Default_Type: d d

Allowed_Types: [d] [d]

Vector: yes yes
Vector_Bounds: - -

Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: input_load input_delay
Description: "input load value (F)" "input delay"
Data_Type: real real

Default_Value: 1.0e-12 0.0

276

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Limits: - -
Vector: yes yes
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: table_values

Description: "lookup table values"
Data_Type: string

Default_Value: -

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: no

Common parameters: rise_delay, fall_delay.

Description: The lookup table provides a way to map any arbitrary n-input, m-output combi-

national logic block to XSPICE. The inputs are mapped to the output using a string of
length m * (2”n). The string may contain values "0", "1", "X", or "Z", corresponding to
an output of low, high, unknown, or high-impedance, respectively. The outputs are only
mapped for inputs which are valid logic levels. Any unknown bit in the input vector will
always produce an unknown output. The character string is in groups of (2”*n) characters,
one group corresponding to each output pin, in order. The first character of a group in
the string table_values corresponds to all inputs value zero, and the last (2*n) char-
acter in the group corresponds to all inputs value one, with the first signal in the input
vector being the least significant bit. For example, a 2-input lookup table representing the
function (A * B) (thatis, A AND B), with input vector [A B] can be constructed with a
table_values string of "0001"; function (~A * B) with input vector [A B] can be con-
structed with a "table_values" string of "0010". The delays associated with each output
pin’s rise and those associated with each output pin’s fall may be specified independently.
The model also posts independent input load values per input pin (in farads) based on
the parameter input_load. The parameter input_delay provides a way to specify ad-
ditional delay between each input pin and the output. This delay is added to the rise- or
fall-time of the output. The output of this model does not respond to the total loading it
sees on the output; it will always drive the output strongly with the specified delays.

Example SPICE Usage:

* LUT encoding 3-bit parity function

a4 [1 2 3] [5] lut_pty3_1

.model lut_pty3_1 d_genlut(table_values = "01101001"

+ input_load [2.0e-12])

* LUT encoding a tristate inverter function (en in out)
a2 [1 2] [3] lut_triinv_1

.model lut_triinv_1 d_genlut(table_values = "Z1Z0")

* LUT encoding a half-adder function (A B Carry Sum)

a8 [1 2] [3 4] lut_halfadd_1

.model lut_halfadd_1 d_genlut(table_values = "00010110"
+ rise_delay [1.5e-9 1.0e-9] fall_delay [1.5e-9 1.0e-9])

8.4. DIGITAL MODELS

8.4.24 D_process

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

Description:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

cm_d_process
d_process
"digital process"

277

in clk
"input" "clock"
in in
d d
[d] [d]
yes no
yes no
reset out
"reset" "output™
in out
d d
[d] [d]
no yes
- [1 -]
yes no
clk_delay
"delay from CLK"
real
1.0e-9
no
yes

process_file

"file name of the executable process"

string
"process”

no

yes

process_params
"parameters to be passed to an
string

yes

executable process"

278

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

yes

input_load
"input loading capacitance
real

1.0e-12
o

;es
clk_load

"clock loading capacitance
real

1.0e-12

0

;es
reset_load

"reset loading capacitance
real
1.0e-12

no

yes

(F)"

Description: The digital d_process model runs an external program, specified by the pro-

cess_file parameter, to read the input signals when the clock changes to ONE and then
produces the output signals after the clk_delay. There can be zero (null) or more inputs,
and one or more outputs. The maximum number of inputs or outputs is 255 bits wide.
If a reset signal is specified and has the value ONE when the clock changes to ONE, the
external program is notified of the reset by sending it a negative time value. The output
signals are initialized to Uz. The strength (s, 1, z, u) of an input signal is ignored. After
time 0.0 initialization, outputs are driven with STRONG (s) strength. The input and out-
put states are binary ONE or ZERO. If an input value is UNKNOWN (U) then a ONE or
ZERO is chosen at random.

The external program is started by fork/exec or spawn, and connections are established
using pipes. The external program is written in C, and first of all, in main() the argc,
argv parameters can be read. These command line parameters are those specified in the
process_params field of the d_process .model statement. A header is sent from ngspice to
the external program which acknowledges that the number of inputs and outputs match.
Thereafter, the external program executes a loop: while (read data from the input pipe and
if it is OK) { compute output data for that input write the output data to the output pipe

8.4. DIGITAL MODELS 279

} In the meantime the cm_d_process code in ngspice is writing data to its output pipe at
each clock change to ONE, then reading on its input pipe the response from the external
program.

Please see examples/xspice/d_process for a simple example and study the source code
in the .c files. The d_process model was developed by Uros Platise and he has provided a
non-trivial example and detailed descriptions at:
https://www.isotel.eu/mixedsim/embedded/motorforce/index.html.

Example SPICE Usage:

al [d1l] clkl resetl [0l 02 03 04] procl

.model procl d_process (process_file="proglin4out"
+ clk_delay = 2.5e-9)

8.4.25 d_cosim

NAME_TABLE:

Spice_Model_Name: d_cosim
C_Function_Name: ucm_d_cosim
Description: "Bridge to an irreversible digital model"
PORT_TABLE:

Port_Name: d_in
Description: "digital input"
Direction: in
Default_Type: d
Allowed_Types: [d]

Vector: yes
Vector_Bounds: [0 -]
Null_Allowed: yes

PORT_TABLE:

Port_Name: d_out
Description: "digital output"
Direction: out
Default_Type: d
Allowed_Types: [d]

Vector: yes
Vector_Bounds: [0 -]
Null_Allowed: yes

PORT_TABLE:

Port_Name: d_inout
Description: "digital bidirectional port"
Direction: inout
Default_Type: d
Allowed_Types: [d]

Vector: yes
Vector_Bounds: [0 -]
Null_Allowed: yes

PARAMETER_TABLE:

https://www.isotel.eu/mixedsim/embedded/motorforce/index.html

280

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

delay

"output delay time"
real

1.0e-9

[le-12 -]

no

yes

simulation
"A shared library containing a digital model"
string

no

no

/* Instances maintain an internal input event queue that should be at least

* as large as the number of inputs.

Performance with clocked logic may

* be improved by making it larger than (2 * F) / MTS, where F is
* the clock frequency and MTS is the maximum timestep for .tran.

*/
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

gueue_size

"input queue size"
int

128

[1 -]

no

yes

irreversible

"Parameter passed to library function cm_irreversible()"
int

1

no

yes

STATIC_VAR_TABLE:
Static_Var_Name:
Data_Type:
Description:

cosim_instance
pointer
"Per-instance structure"

The d_cosim code model is similar to d_process, as it also requires external software to define
the behaviour of a code model instance. An important difference is that with d_cosim such
software runs inside the ngspice process. This code model is intended as a container for other

8.5. TRANSMISSION LINES MODELS 281

types of digital simulation and to provide a simplified programming interface for devices whose
behaviour is defined purely by conventional software. In particular, it is intended to act as a
container for sub-simulations that can not discard any time steps that fail in the main simulator;
that is, they are irreversible.

The actual behaviour of any d_cosim instance is defined by a shared library or Windows DLL
that is set by the ’simulation’ parameter and dynamically loaded. Input changes are relayed to a
function in this library and any outputs reported by the library are relayed to the simulated cir-
cuit. The interface between this code model and the library that it hosts is defined in C-language
header file cosim.h, included in the Ngspice source code and in directory share/ngspice/script-
s/src/ngspice in a binary package. This interface is simpler than the XSPICE programming
interface, but that has a cost: without special care only one d_cosim instance should exist in a
circuit. For more information, see the description of cm_irreversible() in section 24.7.2.7.

Example SPICE usage:

adut [Clk Comp Start] [Sample Valid ~d5 ~d4 ~d3 ~d2 ~dl1 ~dO] null dut
.model dut d_cosim simulation="./adc.so"

A method for creating a suitable library from HDL code is described in section 10.3.

8.5 Transmission lines models

A set of XSPICE transmission lines models was added since the version 45. These models
include microstrip lines and allow to simulate RF circuits with Ngspice. Here is an overview
of this model group. All devices mentioned described in this section are available from Qucs-S
schematic capture GUI.

8.5.1 Generic transmission line

NAME_TABLE:

Spice_Model Name: tline
C_Function_Name: cm_tline
Description: "Generic transmission line"
PORT_TABLE:

Port_Name: in
Description: "Terminals"
Direction: inout
Default_Type: hd
Allowed_Types: [hd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:

Port_Name: out

Description: "Terminals"

282

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

inout
hd
[hd]
no

no

Vlsens

"Sensing terminals"
in

vd

[vd]

no

no

V2sens

"Sensing terminals"
in

vd

[vd]

no

no

1
"length"
real

1.0

no

yes

z

"characteristic impedance"

real
50.0

no

yes

a

"attenuation per length (dB)"

real
0.0

8.5. TRANSMISSION LINES MODELS 283

Vector: no
Vector_Bounds: -

Null_Allowed: yes

STATIC_VAR TABLE:

Static_Var_Name: sim_points_data
Description: "local static data"
Data_Type: pointer

This model represents a generic transmission line described by characteristic impedance, length,
and attenuation per length. The device contains models for both the frequency and time do-
mains. The XSPICE device has four ports. The V1sens and V2sens terminals are the voltage
sensing terminals. They should be connected in parallels to the line terminals. These terminals
serve for the transient model. An example of netlist entry for this device is given below:

Al %hd(in 0) %hd(out 0) %vd(in 0) %vd(out 0) TLIN1
.MODEL TLIN1 TLINE(1=100e-3 z=50.0 a=0.0)

This device represents a lossless transmission line with 500hm characteristic impedance and
100mm length. The sensing terminals are connected in parallel to the input and output terminals
(nodes in and out).

8.5.2 Generic coupled lines

NAME_TABLE:

Spice_Model_Name: cpline
C_Function_Name: cm_cpline
Description: "Generic transmission line"
PORT_TABLE:

Port_Name: pl

Description: "Terminals Linel"
Direction: inout
Default_Type: hd

Allowed_Types: [hd]

Vector: no

Vector_Bounds: -

Null_Allowed: no

PORT_TABLE:

Port_Name: p2

Description: "Terminals Linel"
Direction: inout
Default_Type: hd

Allowed_Types: [hd]

284 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector: no

Vector_Bounds: -

Null_Allowed: no

PORT_TABLE:

Port_Name: p3

Description: "Terminals Line2"
Direction: inout
Default_Type: hd

Allowed_Types: [hd]

Vector: no

Vector_Bounds: -

Null_Allowed: no

PORT_TABLE:

Port_Name: p4

Description: "Terminals Line2"
Direction: inout
Default_Type: hd

Allowed_Types: [hd]

Vector: no

Vector_Bounds: -

Null_Allowed: no

PORT_TABLE:

Port_Name: pls

Description: "Sensing terminals line 1"
Direction: in

Default_Type: vd

Allowed_Types: [vd]

Vector: no

Vector_Bounds: -

Null_Allowed: no

PORT_TABLE:

Port_Name: p2s

Description: "Sensing terminals line 1"
Direction: in

Default_Type: vd

Allowed_Types: [vd]

Vector: no

Vector_Bounds: -

Null_Allowed: no

PORT_TABLE:

Port_Name: p3s

Description: "Sensing terminals line 1"
Direction: in

Default_Type: vd

Allowed_Types: [vd]

Vector: no

Vector_Bounds: -
Null_Allowed: no

8.5. TRANSMISSION LINES MODELS 285

PORT_TABLE:

Port_Name: p4s
Description: "Sensing terminals line 1"
Direction: in
Default_Type: vd
Allowed_Types: [vd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: 1
Description: "length"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: ze
Description: "characteristic impedance of even mode"
Data_Type: real
Default_Value: 50.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: zo
Description: "characteristic impedance of odd mode"
Data_Type: real
Default_Value: 50.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: ae
Description: "attenuation per length (dB) even mode"
Data_Type: real
Default_Value: 0.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: ao

Description: "attenuation per length (dB) odd mode"

286

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Data_Type: real
Default_Value: 0.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: ere
Description: "dielectric constant even mode"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: ero
Description: "dielectric constant odd mode"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

STATIC_VAR_TABLE:
Static_Var_Name:
Description:
Data_Type:

sim_points_data
"local static data"
pointer

The device represents two generic coupled lines. It is described by characteristic impedance for
even and odd propagation modes, line length, and attenuation. The device also provides both
frequency and time domain models. The voltage sensing ports should be connected in parallel
to the line terminals. For example pls in parallel to pl. An example of SPICE entry for the
coupled lines is shown below:

Al %hd(pl 0) %hd(p2 0) %hd(p3 0) %hd(p4 0)

+ %vd(pl 0) %vd(p2 0) %vd(p3 0) %vd(p4 0) CPLINE1
.MODEL CPLINE1l CPLINE(ze=100 zo=50 1=100e-3 ere=1
+ ero=1 ao=0 ae=0)

8.5.3 Microstip line

NAME_TABLE:

8.5. TRANSMISSION LINES MODELS 287

Spice_Model_Name:
C_Function_Name:
Description:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

mlin
cm_mlin
"Microstrip line"

portl

"Microstrip terminals"
inout

hd

[hd]

no

no

port2

"Microstrip terminals"
inout

hd

[hd]

no

no

Vlsens

"Sensing terminals”
in

vd

[vd]

no

no

V2sens

"Sensisng terminals"
in

vd

[vd]

no

no

"length (m)"
real
le-2

no

yes

288

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:

w
"width (m)"
real
le-3

no

yes

model

"Model type"
int

0

no

yes

disp

"Dispersion type"
int

0

no

yes

er
"Substrate dielectric
real
9.8

no

yes

h

"Substrate thickness
real

le-3

no

yes

t

permittivity"

(m)"

"Metal strip thickness (m)"

Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
STATIC_VAR_TABLE:

8.5. TRANSMISSION LINES MODELS 289

real
35e-6

no

yes

tand
"Substrate dielectric loss"
real
2e-4

no

yes

rho

"Metal resistance (Ohmxm)"
real

0.022e-6

no

yes

d

"RMS Substrate roughness"
real

0.15e-6

no

yes

tranmodel

"TRAN model DC/FULL"
int

0

no

yes

Static_Var_Name: sim_points_data
Description: "local static data"
Data_Type: pointer

290 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Table 8.2: Microstrip model setting
| Model property value | Microstrip model |

0 (default) Hammerstad
1 Kirschning
2 Wheeler
3 Scheider

Table 8.3: Dispersion models
] Disp property value \ Dispersion model

0 (default) Kirschning
1 Kobayashi
2 Yamashita
3 Hammerstad
4 getsinger
5 Scheider
6 Pramanick

This device represents the simple microstrip line. The connection scheme is the same as for
generic transmission line. The er, h, t, tand, d, and rho parameters represent the substrate
properties. This device includes both AC and transient model. The transient model is disabled
by default and could be enabled by setting the tranmodel=1 property. Microstrip line allows to
represent frequency dependency model and different dispersion model. It could be controlled
by setting model and disp properties according the tables below. Set the appropriate code in the
disp and model parameters.

An example of the microstrip device SPICE entry is shown below. The voltage sensing ports

are connected in parallel to device ports (nodes in and out).

Al %hd(in 0) %hd(out 0) %vd(in 0) %vd(out 0) MLIN1

.MODEL MLIN1 MLIN(w=le-3 1=50e-3 er=9.8 h=1le-3 t=35e-6 tand=1le-3

+ rho=0.022e-6 d=0.15e-6 model=0 disp=0 tranmodel=0)

8.5.4 Coupled microstrip

NAME_TABLE:
Spice_Model_Name: cpmlin
C_Function_Name: cm_cpmline

Description: "Generic transmission line"
PORT_TABLE:

Port_Name: pl

Description: "Terminals Linel"
Direction: inout

Default_Type: hd

Allowed_Types: [hd]

Vector: no

Vector_Bounds: -

Null_Allowed: no

PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:

Allowed_Types:

Vector:

Vector_Bounds:

Null_Allowed:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:

Allowed_Types:

Vector:

Vector_Bounds:

Null_Allowed:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:

Allowed_Types:

Vector:

Vector_Bounds:

Null_Allowed:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:

Allowed_Types:

Vector:

Vector_Bounds:

Null_Allowed:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:

Allowed_Types:

Vector:

Vector_Bounds:

Null_Allowed:
PORT_TABLE:
Port_Name:
Description:

8.5. TRANSMISSION LINES MODELS 291

p2

"Terminals Linel"
inout

hd

[hd]

no

no

p3

"Terminals Line2"
inout

hd

[hd]

no

no

p4

"Terminals Line2"
inout

hd

[hd]

no

no

pls

"Sensing terminals line 1"
in

vd

[vd]

no

no

p2s

"Sensing terminals line 1"
in

vd

[vd]

no

no

p3s
"Sensing terminals line 1"

292

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

in
vd
[vd]
no

no

p4s

"Sensing terminals line
in

vd

[vd]

no

no

"length (m)"
real
1.0

no
yes

w
"width (m)"
real
le-3

no

yes

||gap (m)ll
real
le-3

no

yes

model

"Model type"
int

0

1||

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

8.5. TRANSMISSION LINES MODELS

no

yes

disp

"Dispersion type"
int

0

no

yes

er

"Substrate dielectric permittivity"
real

9.8

no

yes

h

"Substrate thickness (m)"
real

le-3

no

yes

t

"Metal strip thickness (m)"
real

35e-6

no

yes

tand
"Substrate dielectric loss"
real
2e-4

no

yes

293

294

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

STATIC_VAR_TABLE:
Static_Var_Name:

Description:
Data_Type:

rho

"Metal resistance (Ohmxm)"
real

0.022e-6

no

yes

d

"RMS Substrate roughness"
real

0.15e-6

no

yes

tranmodel

"TRAN model DC/FULL"
int

0

no

yes

sim_points_data
"local static data"
pointer

This device provides a model for two coupled microstrip lines. The connection circuit is the
same as for the generic coupled lines. The substrate parameters are defined in a similar way
as for microstrip line. This device provide the models for both frequency and time domain.
The time-domain model is disabled by default and may be enabled by setting tranmodel=1
parameter. The line model and dispersion model codes are the same as for microstrip line (see
the tables 8.2 and 8.3). Here is an example of SPICE entry for coupled microstrips:

Al %hd(pl 0) %hd(p2 0) %hd(p3 0) %hd(p4 0)

+ %vd(pl 0) %vd(p2 0) %vd(p3 0) %vd(p4 0) CPMLIN1

.MODEL CPMLIN1 CPMLIN(w=1le-3 1=20e-3 s=0.3e-3 er=9.8 h=le-3
+ t=35e-6 tand=1le-3 rho=0.022e-6 d=0.15e-6 model=0 disp=0)

8.5. TRANSMISSION LINES MODELS 295

8.5.5 Microstrip open end

NAME_TABLE:

Spice_Model_Name: msopen
C_Function_Name: cm_msopen
Description: "Microstrip open end"
PORT_TABLE:

Port_Name: pl
Description: "terminals"
Direction: inout
Default_Type: gd
Allowed_Types: [gd]

Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:

Parameter_Name: w
Description: "width (m)"
Data_Type: real
Default_Value: le-3

Limits: -

Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:

Parameter_Name: model
Description: "Model type"
Data_Type: int
Default_Value: 0

Limits: -

Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:

Parameter_Name: disp
Description: "Dispersion type"
Data_Type: int
Default_Value: 0

Limits: -

Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:

Parameter_Name: msopen_model
Description: "MSOpen model"

Data_Type: int

CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

0

no

yes

er
"Substrate dielectric permittivity"
real
9.8

no

yes

h

"Substrate thickness (m)"
real

le-3

no

yes

t

"Metal strip thickness (m)"
real

35e-6

no

yes

tand
"Substrate dielectric loss"
real
2e-4

no

yes

rho

"Metal resistance (Ohmxm)"
real

0.022e-6

no

8.6. PREDEFINED NODE TYPES FOR EVENT DRIVEN SIMULATION 297

Vector_Bounds: -

Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: d

Description: "RMS Substrate roughness™
Data_Type: real

Default_Value: 0.15e-6

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

This device represents microstrip open end. It provides only an AC domain model. It acts as an
open circuit for DC and transient. The substrate parameters, model, and dispersion are defined
in a same way as for microstrip device. Here is an example of the SPICE netlist entry for this
device.

Al %gd(1 ©) MODEL_MS
.MODEL MODEL_MS MSOPEN(w=117.6u model=0 disp=0 msopen_model=0
+ er=9.8 h=1lm t=12.5u tand=0 rho=1E-10 d=0)

8.6 Predefined Node Types for event driven simulation

The following predefined node types are included with the XSPICE simulator. These should
provide you not only with valuable event-driven modeling capabilities, but also with examples
to use for guidance in creating new UDN (user defined node) types. You may access these node
data by the plot (13.5.56) or eprint (13.5.29) commands.

8.6.1 Digital Node Type

The ‘digital’ node type is directly built into the simulator. 12 digital node values are available.
They are described by a two character string (the state/strength token). The first character (0,
1, or U) gives the state of the node (logic zero, logic one, or unknown logic state). The second
character (s, r, z, u) gives the "strength" of the logic state (strong, resistive, hi-impedance, or
undetermined). So these are the values we have: Os, 1s, Us, Or, 1r, Ur, Oz, 1z, Uz, Ou, 1u, Uu.

8.6.2 Real Node Type

The ‘real’ node type provides for event-driven simulation with double-precision floating point
data. This type is useful for evaluating sampled-data filters and systems. The type implements
all optional functions for User-Defined Nodes, including inversion and node resolution. For
inversion, the sign of the value is reversed. For node resolution, the resultant value at a node is
the sum of all values output to that node. The node is implemented as a user defined node in
ngspice/src/xspice/icm/xtraevt/real.

298 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

8.6.3 Int Node Type

The ‘int’ node type provides for event-driven simulation with integer data. This type is useful
for evaluating round-off error effects in sampled-data systems. The type implements all optional
functions for User-Defined Nodes, including inversion and node resolution. For inversion, the
sign of the integer value is reversed. For node resolution, the resultant value at a node is the
sum of all values output to that node. The node is implemented as a user defined node in
ngspice/src/xspice/icm/xtraevt/int.

8.6.4 (Digital) Input/Output

The analog code models use the standard (analog) nodes provided by ngspice and thus are using
all the commands for sourcing, storing, printing, and plotting data.

I/O for event nodes (digital, real, int, and UDNSs) is offered by the following tools: For output
you may use the plot (13.5.56) or eprint (13.5.29) commands, as well as edisplay (13.5.28)
and eprvcd (13.5.30). The latter writes all node data to a VCD file (a digital standard interface)
that may be analyzed by viewers like gtkwave. For input, you may create a test bench with
existing code models (oscillator (8.3.4), frequency divider (8.4.19), state machine (8.4.18) etc.).
Reading data from a file is offered by d_source (8.4.21). Some comments and hints have been
provided by Sdaau. You may also use the analog input from file, (filesource 8.2.9) and convert
its analog input to the digital type by the adc_bridge (8.3.2). If you want reading data from
a VCD file, please have a look at ngspice tips and examples forum and apply a python script
provided by Sdaau to translate the VCD data to d_source or filesource input.

8.7 Automatic insertion of bridging devices

Within ngspice, event nodes such as digital are quite different objects to analog nodes, but in
real circuits analog and digital devices may interconnect. Ngspice requires bridging devices to
interconnect its analog and digital domains.

Bridges are inserted automatically whenever an analog and a digital node have the same name,
so they are not required to be included in the netlist. To examine the inserted bridging devices,
use the command “listing e”. The extra devices appear at the end of the netlist. Automatic
bridging may be disabled by setting the interpreter variable auto_bridge to zero.

The code models used for analog/digital bridges are described in section 8.3. The default models
are:

* Model for bridging digital node with inputs only.
.model auto_adc adc_bridge(in_low = 1.65 in_high = 1.65)

* Model for bridging digital node with outputs only.
.model auto_dac dac_bridge(out_low = 0 out_high = 3.3)

* Model for bridging digital node with either an inout connection or
* both inputs and outputs.
.model auto_bidi bidi_bridge(out_high=3.3 in_low=1.65 in_high=1.65)

http://en.wikipedia.org/wiki/Value_change_dump
http://gtkwave.sourceforge.net/
https://sourceforge.net/p/ngspice/discussion/ngspice-tips/thread/3e193172/
http://en.wikipedia.org/wiki/Value_change_dump
https://sourceforge.net/p/ngspice/discussion/ngspice-tips/thread/635bb14a/

8.7. AUTOMATIC INSERTION OF BRIDGING DEVICES 299

A 3.3 volt supply has been assumed. That may be overriden by setting a parameter, vcc, to
the supply voltage. When bridges are inserted in a subcircuit the local value of the parameter is
used, so subcircuits may have differing supply voltages. An alternative name for the parameter
may be set as the value of the interpreter variable auto_bridge_parm_d.

If the defaults are unsatisfactory, they may be overridden by setting interpreter variables:

* Qverride the default DAC bridge for TTL levels

.control

pre_set auto_bridge_d_out =

+ (".model auto_dac dac_bridge(out_low = 0.4 out_high = 3.6)"
+ "auto_bridge%sd [%s] [%s] auto_dac")

.endc

The variable name is formed from a fixed part (auto_bridge_), the type of the event node (d is
the internal name for "digital") and the bridging direction (in, out or inout). The first string is
the model definition and the second is expanded into an instance of the bridging device. Note
that the pre_set command is used so that the variable is set before the circuit is parsed.

Bridges may be defined by subcircuits as well as single devices:

pre_set auto_bridge_d_out = (".include test_sub.subcir"
+ "xauto_buf%sd %s %s auto_buf vcc=%g"
+ 1)

Here the constant "1" is required to specify that a separate instance of the subcircuit is needed
for each bridged node.

The included file might be:

* DAC with internal resistance.

.subckt auto_buf dig ana vcc=5

.model auto_dac dac_bridge(out_low = 0 out_high = {vcc})
auto_dac [dig] [internal] auto_dac

rint internal ana 100

.ends

An additional method for controlling automatic bridging is to set the parameter family on indi-
vidual XSPICE devices or on subcircuits. When the parameter is found a specific interpreter
variable is used to control bridges attached to the device, or as the default within the subcircuit.
In this example all output bridges connected to or inside the subcircuit are specified.

Xmpx_gate [inO® inl in2 in3] [sell sel®] out multiplexor
+ family="1sttl”

.control

pre_set auto_bridge_lsttl_d_out =

+ (".model auto_dac dac_bridge(out_low = 0.2 out_high = 3.6)"
+ "auto_bridge%sd [%s] [%s] auto_dac")

.endc

More details of controls on automatic bridging can found as a comment in the source file sr-
c/xspice/evt/evtcheck.c. Some examples of automatic bridging with various control options are
included in the source directory examples/digital/auto_bridge.

300 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Chapter 9

Verilog-A Compact Device Models

9.1 Introduction

New compact device models today are released as Verilog-A code, a analog subset of Verilog-
AMS. Well-known examples are BSIMBULK, BSIMCMG, PSP, HiSIM or HICUM. The Si2
CMC web page lists more than 20 device models which are publicly available. The models
cover state-of-the-art MOS devices like SOI, FinFet, multi-gate and high voltage transistors,
high speed SiGe bipolar transistors, HEMTs as well as complex diodes and resistors. ngspice
makes all of these models available by its integrated OSDI interface and the OpenVAF compiler,
which translates Verilog-A device models into dynamically loadable libraries. User-defined
Verilog-A models may be compiled and loaded into ngspice as well. Currently Linux and MS
Windows are supported, OSDI/OpenVAF for macOS is not yet available. We are thankful to
SemiMod GmbH for these excellent contributions.

9.2 OSDI/OpenVAF

OSDlI is a simulator independent interface for device models. Since release 39 ngspice contains
an integrated adapter to serve this interface and communicate with the compiled shared library
device models. The shared library models are linked into ngspice dynamically at runtime with
the osdi or pre_osdi (see 13.5.58) .control language commands.

OpenVAF compiles Verilog-A compact device model files into shared libraries that conform to
the OSDI interface. The model descriptions have to comply with the standard Verilog-AMS
LRM 2.x. Since ngspice-42, the small signal noise simulation (11.3.4) is implemented. Noise
simulation , however, is only available with the Sparse 1.3 matrix solver, not with KLU (see
11.1.1). Other restrictions may apply. Please consult the OpenVAF web pages for further
information. QA actions are not possible due to CMC refusing to provide data.

301

https://si2.org/standard-models/
https://si2.org/standard-models/
https://semimod.de/projects/
https://openvaf.semimod.de/
https://semimod.de
https://www.accellera.org/images/downloads/standards/v-ams/VAMS-LRM-2-4.pdf
https://www.accellera.org/images/downloads/standards/v-ams/VAMS-LRM-2-4.pdf
https://openvaf.semimod.de/

302 CHAPTER 9. VERILOG-A COMPACT DEVICE MODELS

9.3 How to create and apply OpenVAF models

9.3.1 Preparing for simulation

Using Verilog-A models for simulation in ngspice consists of five steps: Obtain or compile
ngspice with OSDI interface, compile the VA-model with OpenVAF, prepare a suitable model
parameter set, load the compiled model into ngspice ... and start the simulation.

9.3.1.1 Obtaining OpenVAF

OpenVAF may be downloaded for MS Windows or Linux as a single executable each from
https://openvaf.semimod.de/download/, and copied into a user defined directory. Compiling
OpenVAF yourself is possible, however is not recommended due to its complicated procedure.

9.3.1.2 Verilog-A compact models

Verilog-A compact device models are available from the si2 CMC standard compact model
page or directly from device modelling web sites, e.g. BSIM from UC Berkeley, HiSIM from
Hiroshima University, PSP from CEA-Leti, or HICUM from TU Dresden. Others are available.
User provided or user defined models may be compiled as well. All models have to comply
to the LRM 2.x standard of Verilog-AMS. Not all publicly availables models do comply (e.g.
PSP102, EKV2.6).

There is a github repository VA-Models with most of the public available Verilog-A compact
models. The models are checked against the LRM 2.4.0 and prepared for ngspice simulation.
A script for generation of the osdi files is provided and each model has more or less simple
ngspice netlist files to show main capabilities. So this web site should be a good starting point
for beginners.

9.3.1.3 Prepare ngspice

Compile ngspice with the configure flag -enable-o0sdi to add the OSDI interface to ngspice.
The MSVC Windows version ngspice.exe from the distribution already contains this inter-
face.

9.3.1.4 Compile the models

A very basic approach is to put the openvaf executable and the Verilog-A model (e.g. bsimbulk.va)
into a directory, then from a console window cd into that directory and call the command
openvaf bsimbulk.va. After a few seconds the compiled shared library bsimbulk.osdi
becomes available, ready to be loaded into ngspice.

Where to place *.0sdi? Basically in any directory of your choice, the osdi or pre-osdi com-
mands (9.3.1.6) may be prepended by an absolute or relative path to that directory. For a perma-
nent location a bulk model install to 1ibs/ngspice is recommended (to the folder where you
also find the XSPICE code model libs *.cm). An easy way that ngspice can find the compiled

https://openvaf.semimod.de/download/
https://si2.org/standard-models/
https://si2.org/standard-models/
https://bsim.berkeley.edu/models/
https://www.hisim.hiroshima-u.ac.jp/index.php?id=87
https://www.hisim.hiroshima-u.ac.jp/index.php?id=87
https://www.cea.fr/cea-tech/leti/pspsupport/Pages/Welcome.aspx
https://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_intro.html
https://www.accellera.org/images/downloads/standards/v-ams/VAMS-LRM-2-4.pdf
https://github.com/dwarning/VA-Models

9.3. HOW TO CREATE AND APPLY OPENVAF MODELS 303

and linked shared library files (*.0sd1) is to use the environment variable NGSPICE_OSDI_DIR,
e.g. in Linux export NGSPICE_OSDI_DIR="$HOME/Verilog-A/VA-Models/osdilibs".

openvaf --help yields more options of the compiler.

To simplify making suitable *.0sdi models for the example netlists provided in ngspice/ex-
amples/osdi, the appropriate Verilog-A models and short scripts (for Linux and Windows) are
available for download as VAforOSDI.7z from our release directory. The following steps are
required to compile the shared library models:

* Expand VAforOSDI.7z into a directory of your choice.

* Download OpenVAF (Linux or Windows) from and place the executable here in this
directory.

* Run the script openvaf-compile-va.bat for MS Windows or openvaf-compile-va.sh
for Linux

* Copy the *.0sdi files from directory osdilibs to the place where then code models
(*.cm) are located, typically in 1ib/ngspice or similar.

» Edit file *spinit’, typically found in share/ngspice/scripts: Comment out the line
’unset osdi_enabled’

9.3.1.5 Prepare the model parameters

According to chapter 2.5 the model parameter set for each device model is organized in a
.model line. This is valid for OSDI models as well. However here the model type takes
the role to distinguish models from each other, not the level or version parameters found in
the intrinsic models. A TYPE parameter determines, if NMOS (TYPE=1) or PMOS (TYPE=-1),
NPN (TYPE=1) or PNP (TYPE=-1) are selected.

Consider as an example the bsimbulk model. The modeltype is set by the
module bsimbulk(d, g, s, b, t);

line of the BSIMBULK .va Verilog-A model file. So one has to search for the module name in
the *.va file to obtain the modeltype for the .model line and the number of nodes (and their
meanings) for the instance (or device) line while creating the netlist (see next chapter 9.3.1.6).

General form:
.model mname modeltype(pnamel=pvall pname2=pval2 ...)
Examples:

.model BSIMBULK_osdi_N bsimbulk TYPE=1 GEOMOD=0 RGEOMOD=0 ...

So to prepare the .model line, select an appropriate model parameter set, comment out the
version and level parameters, add the type parameter, and change the modeltype to the
Verilog-A module name.

https://sourceforge.net/projects/ngspice/files/ng-spice-rework/39/VAforOSDI.7z
https://openvaf.semimod.de/download/

304 CHAPTER 9. VERILOG-A COMPACT DEVICE MODELS

9.3.1.6 Prepare the ngspice netlist

The compiled model, e.g. bsimbulk.osdi, has to be loaded into ngspice. This may occur
automatically during start-up of ngspice, if the installation has been prepared according to the
bulk model install (compiled *.0sdi models in lib/ngspice, osdi commands added to spinit).

Local usage of a *.0sdi which are residing in an arbitrary directory is possible from within a
.control section (12.4.3) by the pre_osdi command. A relative path (as in the example below)
or an absolute path to that directory may be chosen.

pre_osdi ../osdi_libs/bsimbulkl@7.0sdi

The reference designator for the OSDI devices is the letter N. Instance lines starting with N are
recognized as OSDI devices. The model name mname has to point to the .model line which
contains the parameter set to be selected.

Instance line, general form:
Ndevname nodel ... nodex mname pnamel=pvall pname2=pval2 ...
Examples:

Npl z a vdd vdd BSIMBULK osdi_ P 1=0.1u w=1u

+ as=0.26235p ad=0.26235p ps=2.51u pd=2.51u
Nnl z a vss vss BSIMBULK osdi_N 1=0.1lu w=0.5u
+ as=0.131175p ad=0.131175p ps=1.52u pd=1.52u

NMOS and PMOS devices are selected by their respective model names BSIMBULK osdi N
and BSIMBULK_osdi_P. The number and role of the nodes has been defined in the VA code
in its module statement (module bsimbulk(d, g, s, b, t); inthe BSIMBULK example).
Instance parameters (like 1, w, as etc.) are allowed, as defined by the VA code.

9.3.1.7 Run the simulation

The simulation may be run as usual. Batch mode is especially supported when the OSDI li-
braries are loaded via spinit during ngspice start-up.

9.3.2 OSDI/OpenVAF examples distributed with ngspice

Several example input netlists are available in folder ngspice/examples/osdi. All (except
for bsimbulk-Tlocal) make use of the *.o0sdi installation as a bulk model install in a folder
pointed to by spinit. bsimbulk-local however requires a local copy of bsimbulk.osdi into
folder bsimbulk-local/osdi_1libs.

Example folders bsimbulk, bsimbulk-local, bsimcmg, mixed-models, and psp103 contain
MOS devices with their dc characteristics, CMOS inverters, CMOS ring oscillators, or even the
7552_ann benchmark CMOS circuit with 15.000 transistors and may more passives. Hicum10,
or mext ram contain bipolar devices with output characteristics, Gummel-plot and some circuits.
r2_cmc is a special resistor model.

Chapter 10

Digital Device Models

10.1 U devices (basic digital building blocks)

If PS compatibility mode is set, ngspice supports .subckt statements which contain entirely
U* instances of digital gates, flip-flops, latches, LOGICEXP and PINDLY behavioral primi-
tives (see chapter 10.1.2 for the list), and timing models. Typical rise/fall delays are estimated
from the timing models and PINDLY statements. CONSTRAINT primitives and io models
are ignored. Other U* instances (such as RAM, ROM, STIM and PLAs) in a .subckt are not
supported, and such .subckt will not be converted to XSPICE digital primitives.

These U devices are not meant to immediately describe digital circuits like the 74xx or 40xx
series. However they are used in subcircuits to generate models for such circuits (see chapter
10.2). Their syntax is mostly compatible to the Micro-Cap and PSPICE simulators.

305

306

CHAPTER 10. DIGITAL DEVICE MODELS

10.1.1 General format

General form:

U<name> <basic type> [(<parameter value>x)]

+<digital power node> <digital ground node> <node>x

+<timing model name> <I/0 model name>

+[MNTYMXDLY=<delay select value>]
+[I0_LEVEL=<interface subcircuit select value>]

Example:

U2 AND(2) $G_DPWR $G_DGND 4 5 6
+ M2 IOM2 IO_LEVEL=0 MNTYMXDLY=2

.MODEL M2 UGATE ()
.MODEL IOM2 UIO (INLD=0 OUTLD=0 DRVH=50 DRVL=50

+ ATOD1="ATOD1" DTOA1="DTOD1" ATOD2="ATOD2"
+ ATOD3="ATOD3" DTOA3="DTOD3" ATOD4="ATOD4"
+ TSWLH1=0 TSWLH2=0 TSWLH3=0 TSWLH4=0
+

DTOA2="DTOD2"
DTOA4="DTOD4"

TSWHL1=0 TSWHL2=0 TSWHL3=0 TSWHL4=0 DIGPOWER="DIGPOWER")

10.1.2 List of devices available in ngspice (basic types)

Standard gates:

BUF
INV
AND
NAND
OR
NOR
XOR
NXOR
BUFA
INVA
ANDA
NANDA
ORA
NORA
XORA
NXORA
AO

0A
AOI
OAI

buffer

inverter

AND gate

NAND gate

OR gate

NOR gate

exclusive OR gate
exclusive NOR gate
buffer array

inverter array

AND gate array

NAND gate array

OR gate array

NOR gate array
exclusive OR gate array
exclusive NOR gate array
AND-OR compound gate
OR-AND compound gate
AND-NOR compound gate
OR-NAND compound gate

Tristate gates:

BUF3

buffer

10.2. SUPPORT FOR STANDARD DIGITAL DEVICES 307

INV3 inverter

AND3 AND gate

NAND3 NAND gate

OR3 OR gate

NOR3 NOR gate

XOR3 exclusive OR gate

NXOR3 exclusive NOR gate

BUF3A buffer array

INV3A inverter array

AND3A AND gate array

NAND3A NAND gate array

OR3A OR gate array

NOR3A NOR gate array

XOR3A exclusive OR gate array

NXOR3A exclusive NOR gate array

Flip-flops and latches:

DFF D-type flip-flop, positive-edge triggered
JKFF J-K flip-flop, negative-edge triggered
DLTCH D-type latch

SRFF S-R flip-flop

Delay lines:

DLYLINE Delay line

Behavioral primitives:

LOGICEXP Combinational logic expressions

PINDLY Output buffers and tristate buffers with estimated delays

10.1.3 URC transmission line versus U devices

For the first time ngspice may have a naming conflict, in that the reference designator U is used
for two different devices, the Uniformly distributet RC line and the U devices, our digital basic
types or primitives.

U-devices require the compatibility mode flag (12.14.1) set to PS. In addition U devices are
recognized only when they occur inside of a subcircuit. Finally the basic type
(second token in the U instance line) has to fit to the list of basic types given in the
table above.

URC in any other case ngspice will assume an URC (uniformly distributed) transmission
line.

10.2 Support for standard digital devices

The digital primitives (U devices) are the basic building blocks of the models for digital ICs
used in ngspice. An example of a simple subcircuit model for a And Gate is listed below:

308 CHAPTER 10. DIGITAL DEVICE MODELS

Example: 74LVO8A Quad 2-Input And Gate

R TR 74LVO8BA ------
* Quad 2-Input And Gate

*

x TI PDF File

* bss 2/21/03

b3

.SUBCKT 74LV08A 1A 1B 1Y
+ optional: DPWR_3V=$G_DPWR_3V DGND_3V=$G_DGND_3V
+ params: MNTYMXDLY=0 IO_LEVEL=0

Ul and(2) DPWR_3V DGND_3V
+ 1A 1B 1Y
+ DLY_LVO8 IO_LV-A MNTYMXDLY={MNTYMXDLY} IO_LEVEL={IO_LEVEL}

.model DLY_LVO8 ugate
+ (tplhTY=7.5ns tplhMX=12.3ns tphlTY=7.5ns tphlMX=12.3ns)

.ENDS 74LVO8A

The circuit example ex4.cir in ngspice/examples/digital/digital_devices, together with the
stimulus file ex4.stim presents a fully digital, event based full-adder simulation with 74xx
series ICs. The internal plotting capability of ngspice is used. ex5.cir with the stimulus file
ex5.stim demonstrates the conversion of a D-Type Flip-Flop. ex283.cir is a 74283 4-bit full
adder, with stimulus and involving GTKWave for plotting. Also, there are several new examples
illustrating LOGICEXP and PINDLY.

A set of such models for the 74xx devices currently supported by ngspice is available from the
ngspice models as 74xx-models.7z, derived from the Micro-Cap library.

10.3 Digital devices defined by a Hardware Description Lan-
guage

Ngspice can make a digital device from a description in a Hardware Description Language,
such as Verilog or VHDL. There are several ways that can be done, including running the HDL
code in a separate process, or compiling directly to a partial netlist. The current Ngspice source
code and binary packages also have support for three more direct methods: HDL files may be
compiled by either Verilator, Icarus Verilog or GHDL and the output file may be loaded into
an instance of the d_cosim XSPICE code model (8.4.25). (Warning: using multiple d_cosim
instances in a circuit requires careful planning.)

The steps for using such a digital device are these: write HDL code whose top-level module
defines the device behaviour; the HDL file is compiled into a form acceptable by d_cosim; and
the netlist contains device and model lines to include the new device in a circuit. A circuit of this
type can only be used for a single simulation before process exit, as previous HDL simulation
state may not be cleared, even by remcirc.

https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/examples/digital/digital_devices
https://gtkwave.sourceforge.net/
https://ngspice.sourceforge.io/modelparams.html
https://ngspice.sourceforge.io/model-parameters/74xx-models.7z
https://www.veripool.org/verilator/
https://steveicarus.github.io/iverilog/
http://ghdl.free.fr/

10.3. DIGITAL DEVICES DEFINED BY A HARDWARE DESCRIPTION LANGUAGE309

10.3.1 Using Verilator, Verilog, and code model d_cosim

When using Verilator, version 4.210 or later is required. The compilation step is not straight-
forward, as “glue code” must be added to the C++ software created by Verilator’s compiler so
that it can be attached to a d_cosim instance. A script is provided to make this step easier:

ngspice vlnggen source.v

Ngspice is used to run the script vinggen, passing the Verilog source file, source.v, as input. The
script analyses C++ code output from Verilator and creates additional code to describe the ports
of the top-level module. Then all the generated code is compiled. The output will be a shared
library/DLL called source.so/source.DLL that may be used in the netlist as:

ahdldevice [inputs ...] [outputs ... Jdmod
.model dmod d_cosim simulation="some/path/source"

Formally, a third list of nodes may be included in the device instance line. If present, they are
matched against inout ports of the top-level Verilog module. But Verilator does not fully support
inout ports.

Additional arguments to vinggen may be other HDL source files or options: everything is passed
to Verilator. To pass options to Verilator, insert “--” before them to mark the end of ngspice
options. Verilator’s “--timing” option must be passed this way if delays are used in the Verilog
source, so to use time delays in the Verilog source the command may be:

ngspice vlnggen -- --timing pwm.v

The output file is named from the first Verilog source file (*.v) that is listed, or is “veri-
lated.so”/”verilated. DLL".

For each port type the connected event nodes are assigned to bits of the Verilog ports from left
to right, treating ports with multiple bits as big-endian: more significant bits are matched first.
If the number of bits of each port type do not match, a warning is issued and extra input or
output bits will be matched with any excess inout bits, in either direction.

Example netlist and Verilog code can be found at examples/xspice/verilator, with instructions
in README .txt.

10.3.2 Using Icarus Verilog, and code model d_cosim

Icarus Verilog handles a larger subset of the full SystemVerilog specification than Verilator and
compiles primarily into interpereted code. Ngspice includes components to run the interpreter,
VVP, inside an instance of the d_cosim code model. To use this feature, Verilog code is com-
piled as usual for Icarus Verilog:

310 CHAPTER 10. DIGITAL DEVICE MODELS

iverilog -0 adc adc.v

The output file is in a form that can be executed directly on Unix-like systems or by VVP.EXE
on Windows. It may also be included in a co-simulation with Ngspice by including netlist lines
like:

aivldevice [inputs ... 1 [outputs ...][inouts ...]dmod
.model dmod d_cosim simulation="ivlng" sim_args=["adc"]

Here, ports of the top-level Verilog module are matched to ngspice nodes as for Verilator. Ad-
ditional string values for the sim_args parameter will be passed to the Verilog simulation as
though included in a command line.

The timescale should always be set in Verilog source, even if no delays are used. The reason
is that even without delays, VVP seems to schedule output to the next internal clock tick, and
SPICE and Verilog times are bound as tight as possible. The precision should be small compared
to the expected transient simulation step.

While the user’s setup for co-simulation with Icarus Verilog should be simple, the underlying
mechanism is somewhat elaborate. In addition to the d_cosim code model that is included in
ngspice’s digital.cm dynamic library, three more dynamic libraries are loaded: ivlng.so/.DLL
is specified by d_cosim’s “simulation” parameter; it loads libvvp.so/.DLL, the dynamic library
version of Icarus Verilog’s simulation engine; and that in turn loads iving.vpi, a Verilog VPI
module. Additionally, libvvp loads the compiled Verilog code, here the file “adc”. The files
for iving.so/.DLL and ivlng.vpi are built and installed with ngspice. For libvvp to be available,

Icarus Verilog must be configured with “—enable-libvvp” before building.

NOTE: At the time of writing, libvvp is not a released feature, and Icarus Verilog must be built
from current development source.

In case of problems, relative or absolute paths to all components can be set as parameters. The
lib_args parameter of d_cosim can be used to set: path to libvvp.so/.DLL; path to iving.vpi; and
the path to a VVP log file. Note that null strings are ignored, so if libvvp is on the standard
dynamic library search path (as it should be), it may be specified as “libvvp”, but must be set.

Example netlists can be found at examples/xspice/icarus_verilog, with instructions in README.txt.
The Verilog code is shared with the Verilator examples.

10.3.3 Using GHDL and code model d_cosim.

The open source compiler GHDL translates VHDL source into binary programs or shared li-
braries. For use with d_cosim a shared library is generated, using the LLVM back end. (Other
GHDL back-ends may work, but have not been tested). To use this method, both an LLVM-
based build of GHDL development code and the C compiler, Clang, should be installed. GHDL
Version 5.0.1, or later, is required. Suitable GHDL binaries can be found on GHDL’s develop-
ment site. (A Github login is required for downloading.)

To prepare VHDL source for co-simulation, it must be processed by “ghdl -a” (analysis) and
combined with compiled source from ghdl_shim.c, a file included with ngspice. Then the code

https://github.com/ghdl/ghdl/
https://github.com/ghdl/ghdl/

10.3. DIGITAL DEVICES DEFINED BY A HARDWARE DESCRIPTION LANGUAGE311

must be “elaborated” by “ghdl -e” to produce a module that d_cosim can load. In addition,
an auxiliary module must be built from included source, using “ghdl --vpi-compile” and
“ghdl --vpi-link”. A scriptis privided to simplify these steps. If the top-level VHDL entity
has the same name as the first source file:

ngspice ghnggen name.vhd ...

When entity and file names differ:

ngspice -- ghnggen -top top_entity_name file_name.vhd ...

The result will be a dynamic library (.so, .DLL or .dylib) named after the top-level. Apart from
“-top”, anything else in the command will be passed to ghdl. In the netlist the VHDL code is
accessed as an A-device, with ports mapped as for Verilog:

adut [inputs ...] [outputs ...][inouts ...]ghdl_mod
.model ghdl_mod d_cosim
+simulation="./entity" sim_args=["./entity"]

The sim_args values are passed to the simulation and may include “-gVariable=value” options
to override top-level Generic parameters. A lib_args parameter may be used to set the explicit
path to the auxiliary VP module, ghdlng.vpi. Otherwise it is expected to have been generated
in the current directory.

Example netlists can be found at examples/xspice/ghdl, with instructions in README.txt.

10.3.4 Using independent processes (e.g. C coded), pipes, and code model
d_process

Independent processes, e.g. made of C-coded executables, may be integrated into ngspice by
using the code model d_process. A template for using this interface, with C-coded executables
and ngspice netlists, is available at examples/xspice/d_process. The README will give you a
detailed description of the procedure. A relatively complex example, a motor control, has been
provided by Uros Platise at Isotel. His d_process code model has been enhanced to serve also

MS Windows and is included in ngspice since version 42.

10.3.5 Using Yosys to map digital Verilog onto basic code model cells

Another method to bring HDL code into a ngspice netlists for mixed-signal simulation is to
use Yosys to compile HDL and map the generated synthesizable cells directly to a ngspice sub-
circuit definition using basic XSPICE elements (BUF, NOT, NAND, NOR, DLATCH, DFF). A
demonstrator has been developed by Uros Platise at Isotel (see description and code).

https://www.isotel.eu/mixedsim/embedded/motorforce/index.html
https://yosyshq.net/yosys/
https://www.isotel.eu/mixedsim/intro/prssine.html
https://github.com/Isotel/mixedsim/tree/master/examples/prssine

312 CHAPTER 10. DIGITAL DEVICE MODELS

Chapter 11

Analyses and Output Control (batch
mode)

The command lines described in this chapter are used to specify analyses and outputs within
the circuit description file. They start with a *.” (dot commands). Specifying analyses and plots
(or tables) in the input file with dot commands is used with batch runs. Batch mode is entered
when either the -b option is given upon starting ngspice

ngspice -b -r rawfile.raw circuitfile.cir
or when the default input source is redirected from a file (see also Chapt. 12.4.1).
ngspice < circuitfile.cir

In batch mode, the analyses specified by the control lines in the input file (e.g. .ac, .tran, etc.)
are immediately executed. If the -r rawfile option is given then all data generated is written to
a ngspice rawfile. The rawfile may later be read by the interactive mode of ngspice using the
load command (see 13.5.48). In this case, the . save line (see 11.6) may be used to record the
value of internal device variables (see Appendix, Chapt. 27).

If a rawfile is not specified, then output plots (in ‘line-printer’ form) and tables can be printed
according to the .print, .plot, and . four control lines, described in Chapt. 11.6.

If ngspice is started in interactive mode (see Chapt. 12.4.2), like
ngspice circuitfile.cir

and no control section (.controlendc, see 12.4.3) is provided in the circuit file, the dot
commands are not executed immediately, but are waiting for manually receiving the command
run.

11.1 Simulator Variables (.options)

Various parameters of the simulations available in Ngspice can be altered to control the ac-
curacy, speed, or default values for some devices. These parameters may be changed via the
option command (described in Chapt. 13.5.55) or via the .options line:

313

314 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

General form:
.options optl opt2 ... (or opt=optval ...)
Examples:

.options reltol=.005 trtol=8

The options line allows the user to reset program control and user options for specific simulation
purposes. Options specified to ngspice via the option command (seel3.5.55) are also passed on
as if specified on a .options line. Any combination of the following options may be included,
in any order. ‘x’ (below) represents some positive number.

11.1.1 General Options

SPARSE selects the Sparse 1.3 matrix solver, which is also the standard when no option is
given. It is preferable for simulating behavioural device models. This option is required
with noise (11.3.4) or CIDER (26) simulation.

KLU selects the KLU matrix solver, which is preferable (yielding faster simulation) when
(large) circuits containing MOS devices are to be simulated. Small signal noise (11.3.4)
or CIDER (26) simulations are not (yet) supported.

ACCT causes accounting and run time statistics to be printed.
NOACCT no printing of statistics, no printing of the Initial Transient Solution.

NOINIT suppresses only printing of the Initial Transient Solution, maybe combined with
ACCT.

LIST causes the summary listing of the input data to be printed.
NOMOD suppresses the printout of the model parameters.
NOPAGE suppresses page ejects.

NODE causes the printing of the node table.

NOREFVALUE suppresses printing of reference values, when ngspice has been compiled
with configure option - -enable-ndev.

OPTS causes the option values to be printed.

SEED=vallrandom Sets the seed value of the random number generator. val may be any
integer number greater than 0. As an alternative, random will set the seed value to the
current Unix epoch time, which is the time in seconds since 1.1.1970 excluding leap
seconds.

SEEDINFO will print the seed value when it has been set to a new integer number.

11.1. SIMULATOR VARIABLES (.OPTIONS) 315

TEMP=x Resets the operating temperature of the circuit. The default value is 27 °C (300K).
TEMP can be overridden per device by a temperature specification on any temperature
dependent instance. May also be generally overridden by a .TEMP card (2.14).

TNOM=x resets the nominal temperature at which device parameters are measured. The de-
fault value is 27 °C (300 deg K). TNOM can be overridden by a specification on any
temperature dependent device model.

WARN-=1I0 enables or turns of SOA (Safe Operating Area) voltage warning messages (default:
0).

MAXWARNS=x specifies the maximum number of SOA (Safe Operating Area) warning mes-
sages per model (default: 5).

SAVECURRENTS save currents through all terminals of the following devices: M, J, Q, D, R,
C,L,B,FE G, W,S,I(see 2.3). Recommended only for small circuits, because otherwise
memory requirements explode and simulation speed suffers. See 11.7 for more details.
This option is available only for op, dc, and tran simulation, not for ac. During transient
simulation the value returned may be delayed by one time step. For M devices, MOS
level 1 is supported fully, not all nodes are reported for the other MOS devices. As the
option is installed upfront, before the simulation, it has no clue about the devices used in
the circuit. It simply does do a best guess. This may lead to empty vectors of zero length
after the simulation, impeding commands like wrdata (13.5.106). Running command
remzerovec (13.5.64) before wrdata will remove all these zero length vectors.

11.1.2 OP and DC Solution Options

The following options control properties pertaining to DC and OP (operating point) analyses
and algorithms. Since transient analysis (11.1.4) is based on OP, many of the options affect
transient simulation as well. AC analysis (11.1.3) can be performed only when a stable operat-
ing point has been found.

ABSTOL=x resets the absolute current error tolerance of the program. The default value is 1
PA.

GMIN=x resets the value of GMIN, the minimum conductance allowed by the program. The
default value is 1.0e-12.

GMINSTEPS=x [*] sets the number of Gmin steps to be attempted. If the value is set to zero,
the standard gmin stepping algorithm is skipped. The standard behavior is that gmin
stepping is tried before going to the source stepping algorithm.

ITL1=x resets the dc iteration limit. The default is 100.
ITL2=x resets the dc transfer curve iteration limit. The default is 50.

KEEPOPINFO Retain the operating point information when either an AC, Distortion, or Pole-
Zero analysis is run. This is particularly useful if the circuit is large and you do not want
to run a (redundant) . OP analysis.

NOOPITER Go directly to gmin stepping, skipping the first iteration.

316 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

PIVREL=x resets the relative ratio between the largest column entry and an acceptable pivot
value. The default value is 1.0e-3. In the numerical pivoting algorithm the allowed min-
imum pivot value is determined by EPSREL = AMAX1(PIVREL - MAXVAL, PIVTOL) where
MAXVAL is the maximum element in the column where a pivot is sought (partial pivot-

ing).

PIVTOL=x resets the absolute minimum value for a matrix entry to be accepted as a pivot.
The default value is 1.0e-13.

RELTOL=x resets the relative error tolerance of the program. The default value is 0.001
(0.1%).

RSHUNT=x introduces a resistor from each analog node to ground. The value of the resistor
should be high enough to not interfere with circuit operations. The XSPICE option has to
be enabled (see 28.1.8) .

VNTOL=x resets the absolute voltage error tolerance of the program. The default value is 1
uv.

11.1.2.1 Matrix Conditioning info

In SPICE-based simulators, specific problems arise with certain circuit topologies. One issue
is the absence of a DC path to ground at some node. This may happen when two capacitors
are connected in series with no other connection at the common node, or when code models are
cascaded. The result is an ill-conditioned or nearly singular matrix that prevents the simulation
from completing. Configuring with XSPICE introduces the rshunt option to help eliminate
this problem. The option inserts resistors to ground at all the analog nodes in the circuit. In
general, the value of rshunt is set to some high resistance (e.g. 1000 MQ or greater) so that
the operation of the circuit is essentially unaffected but the matrix problems are corrected. If a
‘no DC path to ground’ or a ‘matrix is nearly singular’ error message is encountered, add the
following .option card to the circuit deck:

.option rshunt = 1.0el2

Usually a value of 1 TQ is sufficient to correct the problem. In bad cases one can try lowering
the value to 10 GQ or even 1 GQ.

A different matrix conditioning problem occurs if an inductor is placed in parallel to a voltage
source. The AC simulation will fail, because it is preceded by an OP analysis. Option NOOPAC
(11.1.3) will help if the circuit is linear. However, if the circuit is non-linear the OP analysis is
essential. In such a case, adding a small resistor (e.g. 0.1m£2) in series to the inductor will help
to obtain convergence.

.option rseries = 1.0e-4

adds a series resistor to each inductor in the circuit. Be careful when using behavioral inductors
(see 3.3.13), as the result may become unpredictable.

.option cshunt = 1.3e-13

adds a capacitor from each voltage node in the circuit to ground.

11.1. SIMULATOR VARIABLES (.OPTIONS) 317

11.1.3 AC Solution Options

NOOPAC Do not run an operating point (OP) analysis prior to an AC analysis. This option
requires that the circuit is linear, i.e. consists only of R, L, and C devices, independent
V, I sources and linear dependent E, G, H, and F sources (without poly statement, non-
behavioral). If a non-linear device is detected, the OP analysis is executed automatically.
This option is of interest e.g. in nested LC circuits where no series resistance for L devices
is present. During the OP analysis an ill-formed matrix may be encountered, causing the
simulator to abort with an error message. It is also useful if you have very large linear
arrays (10000 nodes and more), where simulation speedup by a factor of 10 may be
achieved.

11.1.4 Transient Analysis Options

AUTOSTOP stops a transient analysis after successfully calculating all functions (11.4) spec-
ified with the dot command .meas. Autostop is not available with the meas (13.5.50)
command used in control mode.

CHGTOL=x resets the charge tolerance of the program. The default value is 1.0e-14.
CONVSTEP=x relative step limit applied to code models.
CONVABSSTEP=x absolute step limit applied to code models.

INTERP interpolates output data onto fixed time steps on a TSTEP grid (11.3.10). Uses linear
interpolation between previous and next time values. Simulation itself is not influenced
by this option. This option can be used in all simulation modes (batch, control or interac-
tive, 12.4). It may drastically reduce memory requirements in control mode, and file size
in batch mode, but care is needed not to undersample the output data. See also the com-
mand linearize (13.5.46) that achieves a similar result by post-processing the data in
control mode. The Ngspice/examples/xspice/delta-sigma/delta-sigma-1.cir example
demonstrates how INTERP reduces memory requirements and speeds up plotting.

ITL3=x resets the lower transient analysis iteration limit. The default value is 4. (Note: not
implemented in Spice3).

ITL4=x resets the transient analysis time-point iteration limit. The default is 10.

ITL5=x resets the transient analysis total iteration limit. The default is 5000. Set ITL5=0 to
omit this test. (Note: not implemented in Spice3).

ITL6=x [*] synonym for SRCSTEPS.
MAXEVTITER=x sets the maximum number of event iterations per analysis point.

MAXOPALTER=x specifies the maximum number of analog/event alternations that the sim-
ulator will use to solve a hybrid circuit.

MAXORD=x [*] specifies the maximum order for the numerical integration method used by
SPICE. Possible values for the Gear method are from 2 (the default) to 6. Using the value
1 with the trapezoidal method specifies backward Euler integration.

318 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

METHOD=name sets the numerical integration method used by SPICE. Possible names are
‘Gear’ or ‘trapezoidal’ (or just ‘trap’). The default is trapezoidal.

NOOPALTER=TRUEIFALSE if set to false, alternations between analog and event calls to
XSPICE models are enabled during initial DC operating analysis.

RAMPTIME=x During source stepping, this option sets the rate of change of independent
supplies. It also affects code model inductors and capacitors that have initial conditions
specified.

SRCSTEPS=x [*] a non-zero value causes SPICE to use a source-stepping method to find the
DC operating point. The value specifies the number of steps.

TRTOL=x resets the transient error tolerance. The default value is 7. This parameter is an es-
timate of the factor by which SPICE overestimates the actual truncation error. If XSPICE
is configured and *A’ devices are included, the value is internally set to 1 for higher pre-
cision. This slows down transient analysis by a factor of two.

XMU=x sets the damping factor for trapezoidal integration. The default value is XMU=0.5. A
value < 0.5 may be chosen. Even a small reduction, e.g. to 0.495, may already suppress
trap ringing. The reduction has to be set carefully in order not to excessively damp circuits
that are prone to ringing or oscillation, which might lead the user to believe that the circuit
is stable.

11.1.5 ELEMENT Specific options

diode_cjO0=x Add optional diode junction capacitance, if none is defined in the .model state-
ment. Example call: .options diode_cj0=20p.

diode_rser=x Add optional diode series resistance, if none is defined in the .model statement.
Example call: .options diode_rser=20m.

BADMOS3 Use the older version of the MOS3 model with the ‘kappa’ discontinuity.
DEFAD=x resets the value for MOS drain diffusion area; the default is O.

DEFAS=x resets the value for MOS source diffusion area; the default is 0.

DEFL=x resets the value for MOS channel length; the default is 100 um.

DEFW=x resets the value for MOS channel width; the default is 100 pm.

SCALE=x set the element scaling factor for geometric element parameters whose default unit
is meters. As an example: scale=1u and a MOSFET instance parameter W=10 will result
in a width of 10um for this device. An area parameter AD=20 will result in 20e — 12 m?.
Following instance parameters are scaled:

* Resistors and Capacitors: W, L

e Diodes: W, L, Area

* JFET, MESFET: W, L, Area

* MOSFET: W, L, AS, AD, PS, PD, SA, SB, SC, SD

11.2. INITIAL CONDITIONS 319

11.1.6 Transmission Lines Specific Options

TRYTOCOMPACT Applicable only to the LTRA model (see 6.2.1). When specified, the
simulator tries to condense an LTRA transmission line’s past history of input voltages
and currents.

11.1.7 Precedence of option and .options commands

There are various ways to set the above mentioned options in Ngspice. If no option or
.options lines are set by the user, internal default values are given for each of the simula-
tor variables.

You may set options in the init files spinit or .spiceinit via the option command (see 13.5.55).
The values given there will supersede the default values. If you set options via the .options
line in your input file, their values will supersede the default and init file data. Finally, if you set
options inside a .controlendc section, these values will again supersede any simulator
variables given so far.

11.2 Initial Conditions

11.2.1 .NODESET: Specify Initial Node Voltage Guesses

General form:

.nodeset v(nodnum)=val v(nodnum)=val ...
.nodeset all=val

Examples:

.nodeset v(12)=4.5 v(4)=2.23
.nodeset all=1.5

The .nodeset line helps the program find the DC or initial transient solution by making a
preliminary pass with the specified nodes held to the given voltages. The restrictions are then
released and the iteration continues to the true solution. The .nodeset line may be necessary
for convergence on bistable or astable circuits. .nodeset all=val sets all starting node volt-
ages (except for the ground node) to the same value. In general, the .nodeset line should not
be necessary.

320 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

11.2.2 .IC: Set Initial Conditions

General form:
.ic v(nodnum)=val v(nodnum)=val ...
Examples:

.ic v(11)=5 v(4)=-5 v(2)=2.2

The .1ic line is for setting transient initial conditions. It has two different interpretations, de-
pending on whether the uic parameter is specified on the . tran control line, or not. One should
not confuse this line with the .nodeset line. The .nodeset line is only to help DC conver-
gence, and does not affect the final bias solution (except for multi-stable circuits). The two
indicated interpretations of this line are as follows:

1. When the uic parameter is specified on the .tran line, the node voltages specified on
the .1ic control line are used to compute the capacitor, diode, BJT, JFET, and MOSFET
initial conditions. This is equivalent to specifying the ic=... parameter on each device
line, but is much more convenient. The ic=... parameter can still be specified and takes
precedence over the .ic values. Since no dc bias (initial transient) solution is computed
before the transient analysis, one should take care to specify all dc source voltages on the
.ic control line if they are to be used to compute device initial conditions.

2. When the uic parameter is not specified on the .tran control line, the DC bias (initial
transient) solution is computed before the transient analysis. In this case, the node volt-
ages specified on the .ic control lines are forced to the desired initial values during the
bias solution. During transient analysis, the constraint on these node voltages is removed.
This is the preferred method since it allows Ngspice to compute a consistent dc solution.

The wrnodev command 13.5.108 saves node voltages in . ic format so that they may re-input
by .include.

11.3. ANALYSES 321

11.3 Analyses

11.3.1 .AC: Small-Signal AC Analysis

General form:

.ac dec nd fstart fstop
.ac oct no fstart fstop
.ac lin np fstart fstop

Examples:

.ac dec 10 1 10K
.ac dec 10 1K 10OMEG
.ac lin 100 1 100HZ

dec stands for decade variation, and nd is the number of points per decade. oct stands for
octave variation, and no is the number of points per octave. 1in stands for linear variation, and
np is the number of points. fstart is the starting frequency, and fstop is the final frequency.
If this line is included in the input file, Ngspice performs an AC analysis of the circuit over the
specified frequency range. Note that in order for this analysis to be meaningful, at least one
independent source must have been specified with an ac value. Typically it does not make much
sense to specify more than one ac source. If you do, the result will be a superposition of all
sources and difficult to interpret.

Example:

Basic RC circuit

rl21.0

c201.0

vin 1 0 dc © ac 1 $ <--- the ac source
.options noacct

.ac dec 10 .01 10

.plot ac vdb(2) xlog

.end

In this AC (or ’small signal’) analysis, all non-linear devices are linearized around their actual
DC operating point. All L. and C devices get their imaginary value that depends on the actual
frequency step. Each output vector will be calculated relative to the input voltage (current)
given by the AC value (V;, equals 1 in the example above). The resulting node voltages (and
branch currents) are complex vectors. Therefore one has to be careful using the plot command,
specifically, one may use the variants of vxx(node) described in Chapt. 11.6.2 like vdb(2) (see
also the above example).

If one wants to simulate ac on a large linear array, the option noopac (11.1.3) may be useful.
Linear circuits are containing only linear device instances starting with letters r, 1, ¢, 1, v, e, g, f,
h, k. The instances e, g, f, h have to be the simple ones, as of chapt. 4.2, not the polynomial nor
the behavioral variants. If the option noopac is set, ngspice tests for the absence of any other

322 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

devices. If successful, the often lengthy op calculation is skipped, ac is started immediately.
Considerable simulation time savings may result.

Output parameters like @m1[cgs] or @rl[i] (see 27) are not supported during AC simulation.

11.3.2 .DC: DC Transfer Function

General form:
.dc srcnam vstart vstop vincr [src2 start2 stop2 incr2]

Examples:

.dc VIN 0.25 5.0 0.25

.dc VDS 0 10 .5 VGS 0 51
.dc VCE 0 10 .25 IB 0 10u 1lu
.dc RLoad 1k 2k 100

.dc TEMP -15 75 5

The .dc line defines the dc transfer curve source and sweep limits (with capacitors open and
inductors shorted). srcnam is the name of an independent voltage or current source, a resistor,
or the circuit temperature. vstart, vstop, and vincr are the starting, final, and incrementing
values, respectively. The first example causes the value of the voltage source Vjy to be swept
from 0.25 Volts to 5.0 Volts with steps of 0.25 Volt. A second source (src2) may optionally
be specified with its own associated sweep parameters. In such a case the first source is swept
over its own range for each value of the second source. This option is useful for obtaining
semiconductor device output characteristics. See the example on transistor characterization
(17.3).

11.3.3 .DISTO: Distortion Analysis

General form:

.disto dec nd fstart fstop <f2overfl>
.disto oct no fstart fstop <f2overfl>
.disto lin np fstart fstop <f2overfl>

Examples:

.disto dec 10 1kHz 100MEG
.disto dec 10 1kHz 100MEG 0.9

The .disto line does a small-signal distortion analysis of the circuit. A multi-dimensional
Volterra series analysis is done using multi-dimensional Taylor series to represent the nonlin-
earities at the operating point. Terms of up to third order are used in the series expansions.

11.3. ANALYSES 323

If the optional parameter f2overfl is not specified, .disto does a harmonic analysis - i.e.,
it analyses distortion in the circuit using only a single input frequency Fj, which is swept as
specified by arguments of the .disto command exactly as in the .ac command. Inputs at this
frequency may be present at more than one input source, and their magnitudes and phases are
specified by the arguments of the distofl keyword in the input file lines for the input sources
(see the description for independent sources). (The arguments of the distof2 keyword are not
relevant in this case).

The analysis produces information about the AC values of all node voltages and branch currents
at the harmonic frequencies 2F; and , vs. the input frequency Fj as it is swept. (A value of 1
(as a complex distortion output) signifies cos(27(2F;)t) at 2F; and cos(27(3F))t) at 3Fj, using
the convention that 1 at the input fundamental frequency is equivalent to cos(27Fiz).) The
distortion component desired (2F; or 3F7) can be selected using interactive or control commands
in ngspice, and then printed or plotted. (Normally, one is interested primarily in the magnitude
of the harmonic components, so the magnitude of the AC distortion value is looked at). It should
be noted that these are the AC values of the actual harmonic components, and are not equal to
HD2 and HD3. To obtain HD2 and HD3, one must divide by the corresponding AC values
at F1, obtained from an .ac line. This division can be done again using interactive or control
commands.

If the optional f2overfl parameter is specified, it should be a real number between (and not
equal to) 0.0 and 1.0; in this case, .disto does a spectral analysis. It considers the circuit with
sinusoidal inputs at two different frequencies F; and F,. Fj is swept according to the .disto
control line options exactly as in the .ac control line. F; is kept fixed at a single frequency
as F1 sweeps - the value at which it is kept fixed is equal to f2overfl times fstart. Each
independent source in the circuit may potentially have two (superimposed) sinusoidal inputs
for distortion, at the frequencies F1 and F>. The magnitude and phase of the F; component are
specified by the arguments of the distofl keyword in the source’s input line (see the descrip-
tion of independent sources); the magnitude and phase of the F> component are specified by the
arguments of the distof2 keyword. The analysis produces plots of all node voltages/branch
currents at the intermodulation product frequencies F| + F>, F| — F», and (2F;) — F>, vs the
swept frequency Fj. The IM product of interest may be selected using the setplot command,
and displayed with the print and plot commands. It is to be noted as in the harmonic analysis
case, the results are the actual AC voltages and currents at the intermodulation frequencies, and
need to be normalized with respect to .ac values to obtain the IM parameters.

If the distofl or distof2 keywords are missing from the description of an independent source,
then that source is assumed to have no input at the corresponding frequency. The default values
of the magnitude and phase are 1.0 and 0.0 respectively. The phase should be specified in
degrees.

It should be carefully noted that the number f2overf1 should ideally be an irrational number,
and that since this is not possible in practice, efforts should be made to keep the denominator
in its fractional representation as large as possible, certainly above 3, for accurate results (i.e.,
if f2overfl is represented as a fraction A/B, where A and B are integers with no common
factors, B should be as large as possible; note that A < B because f2overfl is constrained
to be < 1). To illustrate why, consider the cases where f2overfl is 49/100 and 1/2. In a
spectral analysis, the outputs produced are at F| + F;, F| — F> and 2F; — F;. In the latter case,
F| — F, = F3, so the result at the F; — F, component is erroneous because there is the strong
fundamental F>, component at the same frequency. Also, F; + F> = 2F; — F> in the latter case,
and each result is erroneous individually. This problem is not there in the case where f2overfl

324 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

= 49/100, because F; — F, = 51/100 F; <> 49/100 F; = F;. In this case, there are two very
closely spaced frequency components at /> and F] — F;. One of the advantages of the Volterra
series technique is that it computes distortions at mix frequencies expressed symbolically (i.e.
nF| + mF,), therefore one is able to obtain the strengths of distortion components accurately
even if the separation between them is very small, as opposed to transient analysis for example.
The disadvantage is of course that if two of the mix frequencies coincide, the results are not
merged together and presented (though this could presumably be done as a postprocessing step).
Currently, the interested user should keep track of the mix frequencies himself or herself and
add the distortions at coinciding mix frequencies together should it be necessary.

Only a subset of the ngspice nonlinear device models supports distortion analysis. These are

Diodes (DIO),

* BJT,

JFET (level 1),

MOSFETs (levels 1, 2, 3, 9, and BSIM1),

MESEFET (level 1).

11.3.4 .NOISE: Noise Analysis

General form:

.noise v(output <,ref>) src (dec | lin | oct) pts fstart fstop
+ <pts_per_summary>

Examples:

.noise v(5) VIN dec 10 1kHz 10OMEG
.noise v(5,3) V1 oct 8 1.0 1.0e6 1

The .noise line does a noise analysis of the circuit. output is the node at which the total
output noise is desired; if ref is specified, then the noise voltage v(output) - v(ref) is
calculated. By default, ref is assumed to be ground. src is the name of an independent source
to which input noise is referred. pts, fstart and fstop are .ac type parameters that specify
the frequency range over which plots are desired. pts_per—_summary is an optional integer; if
specified, the noise contributions of each noise generator is produced every pts_per_summary
frequency points. The .noise control line produces two plots, which can selected by setplot
command:

* one for the Voltage or Current Noise Spectral Density (in V/v/Hz or A//Hz respective the
input is a voltage or current source) curves (e.g. after setplot noisel). There are two
vectors over frequency:

— onoise_spectrum: This is the output noise voltage or current divided by v/ Hz.

11.3. ANALYSES 325

— inoise_spectrum: This the equivalent input noise = output noise divided by the
gain of the circuit.

* one for the Total Integrated Noise (in V or A) over the specified frequency range (e.g.
after setplot noise2). There are two vectors which are in reality scalars:

— onoise_total: This is the output noise voltage over the specified frequency range

— inoise_total: This the equivalent input noise over the specified frequency range
= output noise divided by the gain of the circuit.

The units of all result vectors can be changed by using control variable sqrnoise:

* set sqrnoise: will deliver results in squared form, means the unit is V*/Hz or A*/Hz .
This value refers more to the convenient Power Spectral Density.

Default setting of ngspice is unset sqrnoise, which delivers Voltage or Current Noise Spec-
tral Density. This is more practical from designers point of view.

The KLU matrix solver (11.1.1) is not compatible with noise simulation.

11.3.5 .OP: Operating Point Analysis

General form:

.op

Compute the DC operating point of the circuit with inductors shorted and capacitors opened.

A DC solution can be difficult to find for some circuits, including those with floating nodes
or active devices that are non-conducting. After an attempt at an initial DC solution (may be
suppressed by .option noopiter), ngspice uses the following convergence aids, in order, to
try to obtain a DC solution:

1. gmin stepping (gminsteps option). Inserts small conductances across active devices.
* gminsteps = 0: No gmin
* gminsteps = 1: Two gmin stepping processes in series (default)
* gminsteps = 2: Original SPICE 3 gmin
2. source stepping (srcsteps option)
* srcsteps = 0: No source stepping

* srcsteps = 1: Gillespie source stepping (default)

* srcsteps = 2: Original SPICE 3 source stepping

3. transient operating point (optional)

326 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

DC analysis is complete as soon as one successful step is found, according to some convergence
criteria..

The default behaviour during gmin stepping is the following: Switch gmin to a start value (le-
3), followed by a first trial of gmin stepping, using the true device gmin, then try dynamic gmin
stepping with diagonal parallel gmin elements. If variable dyngmin is set, only dynamic gmin
stepping is used.

Source stepping sets all supply voltages and currents to zero, then ramps them up dynamically
to 100%.

The transient op calculation uses a transient simulation, with default parameters set by ngspice
(initial iteration, gmin and source stepping enabled, optran step size 10n, total optran time 10u).
The results of this transient simulation then are used as the operating point for starting any other
simulation (tran, ac, noise, pz etc.). No other data of this transient op are stored anywhere.

General form:

optran !noopiter gminsteps srcsteps tstep tstop supramp

Example 1:

optran 0 0 0 100n 10u 0O

Example 1 changes the defaults to: no inital op iteration, no gmin stepping, no source stepping,
i.e. directly move to transient op with transient step and stop times given. Flag supramp ins cur-
rently not used. The optran command may be put into one of the initialization files .spiceinit
or spinit. orinto the .control section.

Example 2:

optran 1 1 1 100n 10u O

Example 2 shows an optran command which restores the initial conditions.

Note: an operating point analysis is automatically performed prior to a transient analysis (if the
parameter uic is not selected) to determine the transient initial conditions, and prior to an AC
small-signal, Noise, and Pole-Zero analysis to determine the linearized, small-signal models for
nonlinear devices. These data are not stored, except for setting the KEEPOPINFO variable 11.1.2,
that prompts creating an OP plot in addition to the TRAN, AC, Noise, or PZ plots.

11.3. ANALYSES 327

11.3.6 .PZ: Pole-Zero Analysis

General form:

.pz nodel node2 node3 node4 cur pol
.pz nodel node2 node3 node4 cur zer
.pz nodel node2 node3 node4 cur pz
.pz nodel node2 node3 node4 vol pol
.pz nodel node2 NODE3 node4 vol zer
.pz nodel node2 node3 node4 vol pz

Examples:
.pz 1 06 3 0 cur pol
.pz 2 350 vol zer
.pz 4141 cur pz

cur stands for a transfer function of the type (output voltage)/(input current) while vol stands
for a transfer function of the type (output voltage)/(input voltage). pol stands for pole analysis
only, zer for zero analysis only and pz for both. This feature is provided mainly because if there
is a non-convergence in finding poles or zeros, then, at least the other can be found. Finally,
nodel and node2 are the two input nodes and node3 and node4 are the two output nodes. Thus,
there is complete freedom regarding the output and input ports and the type of transfer function.

In interactive mode, the command syntax is the same except that the first field is pz instead of
.pz. To print the results, one should use the command print all.

11.3.7 .SENS: DC or Small-Signal AC Sensitivity Analysis

General form:

.SENS OUTVAR [< filter ...>] [DC]

.SENS OUTVAR [< filter ...>] AC DEC ND FSTART FSTOP
.SENS OUTVAR [< filter ...>] AC OCT NO FSTART FSTOP
.SENS OUTVAR [< filter ...>] AC LIN NP FSTART FSTOP

Examples:

.SENS V(1,0UT)
.SENS V(0UT) AC DEC 10 100 100k
.SENS I(VTEST) rbias m*_x*x q*:x

The sensitivity of OUTVAR to device and model parameters is calculated when the SENS
analysis is specified. OUTVAR is a circuit variable (node voltage or voltage-source branch
current). The first form calculates sensitivity of the DC operating-point value of OUTVAR. The
second form calculates sensitivity of the AC values of OUTVAR. The sweep parameters listed
for AC sensitivity are the same as in an AC analysis (see .AC above). The output values are in

328 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

dimensions of change in output per unit change of input (as opposed to percent change in output
or per percent change of input).

By default, all modifiable, real-valued parameters are varied and an output vector is created
for each. For primary device parameters, that may be written directly after the node list, the
vector name is the device name. (Examples are resistance and inductance.) Otherwise vector
names have the form device_parameter for device parameters, and model:parameter for model
parameters.

Optional filter strings allow selection of the parameters to be varied and recorded by matching
potential vector names. The filter strings may include **’ to match any substring or ’?” that
will match any single character (a byte, not a complete multibyte character). So, in the example
above, a specific resistor, all device parameters for MOSFETS and all model parameters for
BJTs are selected.

11.3.8 .SP S-Parameter Analysis

General form:

.sp dec nd fstart fstop <donoise>
.sp oct no fstart fstop <donoise>
.sp lin np fstart fstop <donoise>

Examples:

.sp dec 10 1 10K
.sp dec 10 1K 100MEG 1
.sp lin 100 1 100HZ
To prepare the independent voltage source VSRC please see 4.1.11.

SP Simulation Syntax is identical to .AC (11.3.1) except that you have one more optional pa-
rameter donoise (0I1). SP does always linear S-Matrix simulation and, as outputs, it gives

S Matrix (size nport X nport where nport is the count of RF ports) which is the Scattering
Parameters. It may be used to export Touchstone files (to be implemented yet)...

Y Matrix (size nport x nport where nport is the count of RF ports) which is the Admittance
Matrix

Z, Matrix (size nport x nport where nport is the count of RF ports) which is the Impedance
Matrix

All SIYIZ output are S_i_j where i and j are integer identifiers of the ports. They refer to the
portnum identifier of corresponding RF port of the VSRC (4.1.11).

If donoise = 0 SP simulation ends here.

If donoise = 1, SP simulation performs also SP Noise. In this case: you have one more output
which is the Noise Current Correlation Matrix: Cy_i_j Cy_i_j = <in(i), in*(j)=""> which is the

11.3. ANALYSES 329

correlation between equivalent input noise current at port i and equivalent input noise current at
port j. * stands for conjugate</in(i),>

When donoise = 1 and you have a two port networks, 4 more outputs are provided:
Rn input noise resistance (unnormalized)

NF (dB): noise figure of the 2-ports network

NFmin (dB): minimum noise figure

SOpt: optimum input reflection coefficient for noise

11.3.9 .TF: Transfer Function Analysis

General form:
.tf outvar insrc
Examples:

.tf v(5, 3) VIN
.tf i(VLOAD) VIN

The . tf line defines the small-signal output and input for the dc small-signal analysis. outvar
is the small signal output variable and insrc is the small-signal input source. If this line is
included, ngspice computes the dc small-signal value of the transfer function (output/input),
input resistance, and output resistance. For the first example, ngspice would compute the ratio
of V(5, 3) to VIN, the small-signal input resistance at VIN, and the small signal output resistance
measured across nodes 5 and 3.

11.3.10 .TRAN: Transient Analysis

General form:
.tran tstep tstop <tstart <tmax>> <uic>
Examples:

.tran 1ns 100ns
.tran 1lns 1000ns 500ns
.tran 10ns 1lus

tstep is the printing or plotting increment for line-printer output. For use with the post-
processor, tstep is the suggested computing increment. tstop is the final time, and tstart is
the initial time. If tstart is omitted, it is assumed to be zero. The transient analysis always
begins at time zero. In the interval [zero, tstart), the circuit is analyzed (to reach a steady

330 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

state), but no outputs are stored. In the interval [tstart, tstop], the circuit is analyzed and
outputs are stored. tmax is the maximum stepsize that ngspice uses; for default, the program
chooses either tstep or (tstop-tstart)/50.0, whichever is smaller. tmax is useful when one
wishes to guarantee a computing interval that is smaller than the printer increment, tstep.

An initial transient operating point at time zero is calculated according to the following proce-
dure: all independent voltages and currents are applied with their time zero values, all capaci-
tances are opened, inductances are shorted, the non linear device equations are solved iteratively.

uic (use initial conditions) is an optional keyword that indicates that the user does not want
ngspice to solve for the quiescent operating point before beginning the transient analysis. If this
keyword is specified, ngspice uses the values specified using IC=... on the various elements as
the initial transient condition and proceeds with the analysis. If the .ic control line has been
specified (see 11.2.2), then the node voltages on the .ic line are used to compute the initial
conditions for the devices. IC=... will take precedence over the values given in the .1ic control
line. If neither IC=... nor the .1ic control line is given for a specific node, node voltage zero is
assumed.

Look at the description on the .ic control line (11.2.2) for its interpretation when uic is not
specified.

11.3.11 Transient noise analysis (at low frequency)

In contrast to the analysis types described above, the transient noise simulation (noise current
or voltage versus time) is not implemented as a dot command, but is integrated with the inde-
pendent voltage source vsrc (isrc not yet available) (see 4.1.7) and used in combination with
the . tran transient analysis (11.3.10).

Transient noise analysis deals with noise currents or voltages added to your circuits as a time
dependent signal of randomly generated voltage excursion on top of a fixed dc voltage. The
sequence of voltage values has random amplitude, but equidistant time intervals, selectable by
the user (parameter NT). The resulting voltage waveform is differentiable and thus does not
require any modifications of the matrix solving algorithms.

White noise is generated by the ngspice random number generator, applying the Box-Muller
transform. Values are generated on the fly, each time when a breakpoint is hit.

The 1/f noise is generated with an algorithm provided by N. J. Kasdin (‘Discrete simulation of
colored noise and stochastic processes and 1/ f* power law noise generation’, Proceedings of
the IEEE, Volume 83, Issue 5, May 1995 Page(s):802—827). The noise sequence (one for each
voltage/current source with 1/f selected) is generated upon start up of the simulator and stored
for later use. The number of points is determined by the total simulation time divided by NT,
rounded up the the nearest power of 2. Each time a breakpoint (nx« NT, relevant to the noise
signal) is hit, the next value is retrieved from the sequence.

If you want a random, but reproducible sequence, you may select a seed value for the random
number generator by adding

setseed nn
to the spinit or .spiceinit file, nn being a positive integer number.

The transient noise analysis will allow the simulation of the three most important noise sources.
Thermal noise is described by the Gaussian white noise. Flicker noise (pink noise or 1 over

11.3. ANALYSES 331

f noise) with an exponent between 0 and 2 is provided as well. Shot noise is dependent on
the current flowing through a device and may be simulated by applying a non-linear source as
demonstrated in the following example:

Example:

* Shot noise test with B source, diode

* voltage on device (diode, forward)

Vdev out 0 DC @ PULSE(0.4 0.45 10u)

* diode, forward direction, to be modeled with noise
D1 mess O DMOD

.model DMOD D IS=1le-14 N=1

X1 0 mess out ishot

* device between 1 and 2

* new output terminals of device including noise: 1 and 3
.subckt ishot 1 2 3

* white noise source with rms 1V

* 20000 sample points

VNG 0 11 DC O TRNOISE(1 1n 0 0)

xmeasure the current i(vl)

Vi23DCO

* calculate the shot noise

* sqrt(2xcurrentxgxbandwidth)

BI 1 3 I=sqrt(2*abs(i(vl))*1.6e-19x1le7)*v(1l)

.ends ishot

.tran 1n 20u
.control

run

plot (-1)xi(vdev)
.endc

.end

The selection of the delta time step (NT) is worth discussing. Gaussian white noise has unlimited
bandwidth and thus unlimited energy content. This is unrealistic. The bandwidth of real noise
is limited, but it is still called ‘White’ if it is the same level throughout the frequency range
of interest, e.g. the bandwidth of your system. Thus you may select NT to be a factor of 10
smaller than the frequency limit of your circuit. A thorough analysis is still needed to clarify the
appropriate factor. The transient method is probably most suited to circuits including switches,
which are not amenable to the small signal .NOISE analysis (Chapt. 11.3.4).

There is a price you have to pay for transient noise analysis: the number of required time steps,
and thus the simulation time, increases.

In addition to white and 1/f noise the independent voltage and current sources offer a random
telegraph signal (RTS) noise source, also known as burst noise or popcorn noise, again for
transient analysis. For each voltage (current) source offering RTS noise an individual noise
amplitude is required for input, as well as a mean capture time and a mean emission time.
The amplitude resembles the influence of a single trap on the current or voltage. The capture
and emission times emulate the filling and emptying of the trap, typically following a Poisson

332 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

process. They are generated from an random exponential distribution with respective mean
values given by the user. To simulate an ensemble of traps, you may combine several current or
voltage sources with different parameters.

All three sources (white, 1/f, and RTS) may be combined in a single command line.

RTS noise example:

* white noise, 1/f noise, RTS noise

* voltage source

VRTS2 13 12 DC 0 trnoise(® 0 © O 5m 18u 30u)

VRTS3 11 0 DC O trnoise(® 0 0 O 10m 20u 40u)

VALL 12 11 DC O trnoise(1lm 1lu 1.0 0.1m 15m 22u 50u)

VWlof 21 0 DC trnoise(1lm 1lu 1.0 0.1m)

* current source

IRTS2 10 0 DC O trnoise(0 0 O 5m 18u 30u)

IRTS3 10 0 DC O trnoise(0 0 O 10m 20u 40u)

IALL 10 © DC 0 trnoise(1lm 1lu 1.0 0.1m 15m 22u 50u)
R10 10 0 1

0
0

IWlof 9 0 DC trnoise(lm 1u 1.0 0.1m)
Rall 9 0 1

* sample points
.tran 1lu 500u

.control

run

plot v(13) v(21)
plot v(10) v(9)
.endc

.end

Some details on RTS noise modeling are available in a recent article [20], available here.
This transient noise feature is still experimental.

The following questions (among others) are to be solved:
* clarify the theoretical background
* noise limit of plain ngspice (numerical solver, fft etc.)
* time step (NT) selection
* calibration of noise spectral density
* how to generate noise from a transistor model

* application benefits and limits

http://www.see.ed.ac.uk/~tbt/iscas09.pdf

11.3. ANALYSES 333

11.3.12 .PSS: Periodic Steady State Analysis

Experimental code, not yet made publicly available.

General form:
.pss gfreq tstab oscnob psspoints harms sciter steadycoeff <uic>
Examples:

.pss 150 200e-3 2 1024 11 50 5e-3 uic
.pss 624e6 1lu v_plus 1024 10 150 5e-3 uic
.pss 624e6 500n bout 1024 10 100 5e-3 uic

gfreq is guessed frequency of fundamental suggested by user. When performing transient
analysis the PSS algorithm tries to infer a new rough guess rgfreq on the fundamental. If
gfreq is out of £10% with respect to rgfreq then gfreq is discarded.

tstab is stabilization time before the shooting begin to search for the PSS. It has to be noticed
that this parameter heavily influence the possibility to reach the PSS. Thus is a good practice to
ensure a circuit to have a right tstab, e.g. performing a separate TRAN analysis before to run
PSS analysis.

oscnob is the node or branch where the oscillation dynamic is expected. PSS analysis will give
a brief report of harmonic content at this node or branch.

psspoints is number of step in evaluating predicted period after convergence is reached. It
is useful only in Time Domain plots. However this number should be higher than 2 times the
requested harms. Otherwise the PSS analysis will properly adjust it.

harms number of harmonics to be calculated as requested by the user.
sciter number of allowed shooting cycle iterations. Default is 50.

steady_coeff is the weighting coefficient for calculating the Global Convergence Error (GCE),
which is the reference value in order to infer is convergence is reached. The lower steady_coeff
is set, the higher the accuracy of predicted frequency can be reached but at longer analysis time
and sciter number. Default is 1e-3.

uic (use initial conditions) is an optional keyword that indicates that the user does not want
ngspice to solve for the quiescent operating point before beginning the transient analysis. If this
keyword 1s specified, ngspice uses the values specified using IC=... on the various elements as
the initial transient condition and proceeds with the analysis. If the .ic control line has been
specified, then the node voltages on the .ic line are used to compute the initial conditions for
the devices. Look at the description on the .ic control line for its interpretation when uic is
not specified.

334 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

11.4 Measurements after AC, DC and Transient Analysis

11.4.1 .meas(ure)

The .meas or .measure statement (and its equivalent meas command, see Chapt. 13.5.50)
are used to analyze the output data of a tran, ac, or dc simulation. The command is executed
immediately after the simulation has finished.

11.4.2 batch versus interactive mode

.meas analysis may not be used in batch mode (-b command line option), if an output file
(rawfile) is given at the same time (-r rawfile command line option). In this batch mode
ngspice will write its simulation output data directly to the output file. The data is not kept
in memory, thus is no longer available for further analysis. This is done to allow a very large
output stream with only a relatively small memory usage. For .meas to be active you need to
run the batch mode with a .plot or .print command. A better alternative may be to start
ngspice in interactive mode.

If you need batch like operation, you may add a .controlendc section to the input
file:

Example:

xinput file
.tran 1lns 1000ns

Sk >k 3k >k 5k 3k 5k 3k 5k >k ok >k >k >k >k >k >k 5k >k 5k >k 5k >k 5k >k 5k >k ok >k >k >k ok >k
.control

run

write outputfile data

.endc

Sk >k 3k >k 5k >k 5k >k 5k >k >k >k >k >k >k >k >k >k >k 5k >k 5k >k 5k >k ok >k ok >k >k >k ko k
.end

and start ngspice in interactive mode, e.g. by running the command
ngspice inputfile .

.meas<ure> then prints its user-defined data analysis to the standard output. The analysis
includes propagation, delay, rise time, fall time, peak-to-peak voltage, minimum or maximum
voltage, the integral or derivative over a specified period and several other user defined values.

11.4.3 General remarks

The measure type {DC|AC|TRAN|SP} depends on the data that is to be evaluated, either orig-
inating from a dc analysis, an ac analysis, or a transient simulation. The type SP to analyze a
spectrum from the spec or fft commands is only available when executed in a meas command,
see 13.5.50.

11.4. MEASUREMENTS AFTER AC, DC AND TRANSIENT ANALYSIS 335

result will be a vector containing the result of the measurement. trig_variable, targ_variable,
and out_variable are vectors stemming from the simulation, e.g. a voltage vector v(out).

VAL=val expects a real number val. It may be as well a parameter delimited by ” or {}
expanding to a real number.

TD=td and AT=time expect a time value if measure type is tran. For ac and sp, AT will be a
frequency value, TD is ignored. For dc analysis, AT is a voltage (or current), TD is ignored as
well.

CROSS=# requires an integer number #. CROSS=LAST is possible as well. The same is expected
by RISE and FALL.

Frequency and time values may start at 0 and extend to positive real numbers. Voltage (or
current) inputs for the independent (scale) axis in a dc analysis may start or end at arbitrary real
valued numbers.

Please note that not all of the .measure commands have been implemented.

11.4.4 Input

In the following lines you will get some explanation on the .measure commands. A simple
simulation file with two sines of different frequencies may serve as an example. The transient
simulation delivers time as the independent variable and two voltages as output (dependent
variables).

Input file:

File: simple-meas-tran.sp

* Simple .measure examples

* transient simulation of two sine

x signals with different frequencies
vacl 1 0 DC 0 sin(0 1 1k 0 0)

vac2 2 0 DC 0 sin(0 1.2 0.9k 0 0)
.tran 10u 5m

*

.measure tran ... $ for the different inputs see below!
%

.control

run

plot v(1) v(2)

.endc

.end

After displaying the general syntax of the .measure statement, some examples are posted,
referring to the input file given above.

11.4.5 Trig Targ

.measure according to general form 1 measures the difference in dc voltage, frequency or time
between two points selected from one or two output vectors. The current examples all are using

336 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

transient simulation. Measurements for tran analysis start after a delay time td. If you run
other examples with ac simulation or spectrum analysis, time may be replaced by frequency,
after a dc simulation the independent variable may become a voltage or current.

General form 1:

.MEASURE {DC|AC|TRAN|SP} result TRIG trig_variable VAL=val
+ <TD=td> <CROSS=# | CROSS=LAST> <RISE=# | RISE=LAST>

+ <FALL=# | FALL=LAST> <TRIG AT=time> TARG targ_variable

+ VAL=val <TD=td> <CROSS=# | CROSS=LAST> <RISE=# |

+ RISE=LAST> <FALL=# | FALL=LAST> <TARG AT=time>

Measure statement example (for use in the input file given above):

.measure tran tdiff TRIG v(1) VAL=0.5 RISE=1 TARG v(1l) VAL=0.5 RISE=2

measures the time difference between v(1) reaching 0.5 V for the first time on its first rising
slope (TRIG) versus reaching 0.5 V again on its second rising slope (TARG), i.e. it measures
the signal period.

Output:

tdiff = 1.000000e-003 targ= 1.083343e-003 trig= 8.334295e-005

Measure statement example:

.measure tran tdiff TRIG v(1) VAL=0.5 RISE=1 TARG v(1l) VAL=0.5 RISE=3

measures the time difference between v(1) reaching 0.5 V for the first time on its rising slope
versus reaching 0.5 V on its rising slope for the third time (i.e. two periods).

Measure statement:
.measure tran tdiff TRIG v(1) VAL=0.5 RISE=1 TARG v(1l) VAL=0.5 FALL=1

measures the time difference between v(1) reaching 0.5V for the first time on its rising slope
versus reaching 0.5 V on its first falling slope.

Measure statement:
.measure tran tdiff TRIG v(1) VAL=0 FALL=3 TARG v(2) VAL=0 FALL=3

measures the time difference between v(1) reaching OV its third falling slope versus v(2) reach-
ing 0 V on its third falling slope.

Measure statement:
.measure tran tdiff TRIG v(1) VAL=-0.6 CR0SS=1 TARG v(2) VAL=-0.8 CR0SS=1

measures the time difference between v(1) crossing -0.6 V for the first time (any slope) versus
v(2) crossing -0.8 V for the first time (any slope).

Measure statement:
.measure tran tdiff TRIG AT=1m TARG v(2) VAL=-0.8 CR0SS=3

measures the time difference between the time point 1ms versus the time when v(2) crosses -0.8
V for the third time (any slope).

11.4. MEASUREMENTS AFTER AC, DC AND TRANSIENT ANALYSIS 337

11.4.6 Find ... When

The FIND and WHEN functions allow measuring any dependent or independent time, frequency,
or dc parameter, when two signals cross each other or a signal crosses a given value. Measure-
ments start after a delay TD and may be restricted to a range between FROM and TO.

General form 2:

.MEASURE {DC|AC|TRAN|SP} result WHEN out_variable=val
+ <TD=td> <FROM=val> <TO=val> <CROSS=# | CROSS=LAST>
+ <RISE=# | RISE=LAST> <FALL=# | FALL=LAST>
Measure statement:
.measure tran teval WHEN v(2)=0.7 CROSS=LAST
measures the time point when v(2) crosses 0.7 V for the last time (any slope).

General form 3:

.MEASURE {DC|AC|TRAN|SP} result
+ WHEN out_variable=out_variable2
+ <TD=td> <FROM=val> <TO=val> <CROSS=# | CROSS=LAST>
+ <RISE=# | RISE=LAST> <FALL=# | FALL=LAST>
Measure statement:
.measure tran teval WHEN v(2)=v(1l) RISE=LAST

measures the time point when v(2) and v(1) are equal, v(2) rising for the last time.

General form 4:

.MEASURE {DC|AC|TRAN|SP} result FIND out_variable

+ WHEN out_variable2=val <TD=td> <FROM=val> <TO=val>
+ <CROSS=# | CROSS=LAST> <RISE=# | RISE=LAST>

+ <FALL=# | FALL=LAST>

Measure statement:

.measure tran yeval FIND v(2) WHEN v(1)=-0.4 FALL=LAST

returns the dependent (y) variable drawn from v(2) at the time point when v(1) equals a value
of -0.4, v(1) falling for the last time.

General form 5:

.MEASURE {DC|AC|TRAN|SP} result FIND out_variable
+ WHEN out_variable2=out_variable3 <TD=td>

+ <CROSS=# | CROSS=LAST>

+ <RISE=#|RISE=LAST> <FALL=#|FALL=LAST>

Measure statement:

.measure tran yeval FIND v(2) WHEN v(1)=v(3) FALL=2

338 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

returns the dependent (y) variable drawn from v(2) at the time point when v(1) crosses v(3),
v(1) falling for the second time.

General form 6:

.MEASURE {DC|AC|TRAN|SP} result FIND out_variable AT=val

Measure statement:
.measure tran yeval FIND v(2) AT=2m

returns the dependent (y) variable drawn from v(2) at the time point 2 ms (given by AT=time).

11.4.7 AVG|MIN|MAX|PP|RMS|MIN_AT |[MAX_AT

General form 7:

.MEASURE {DC|AC|TRAN|SP} result
+ {AVG|MIN|MAX]|PP|RMS|MIN_AT|MAX_AT}
+ out_variable <TD=td> <FROM=val> <TO=val>

Measure statements:

.measure tran ymax MAX v(2) from=2m to=3m

returns the maximum value of v(2) inside the time interval between 2 ms and 3 ms.
.measure tran tymax MAX_AT v(2) from=2m to=3m

returns the time point of the maximum value of v(2) inside the time interval between 2 ms and
3 ms.

.measure tran ypp PP v(1) from=2m to=4m

returns the peak to peak value of v(1) inside the time interval between 2 ms and 4 ms.
.measure tran yrms RMS v(1l) from=2m to=4m

returns the root mean square value of v(1) inside the time interval between 2 ms and 4 ms.
.measure tran yavg AVG v(1l) from=2m to=4m

returns the average value of v(1) inside the time interval between 2 ms and 4 ms.

11.4.8 Integ

General form 8:

.MEASURE {DC|AC|TRAN|SP} result INTEG<RAL> out_variable
+ <TD=td> <FROM=val> <TO=val>

Measure statement:

.measure tran yint INTEG v(2) from=2m to=3m

returns the area under v(2) inside the time interval between 2 ms and 3 ms.

11.4. MEASUREMENTS AFTER AC, DC AND TRANSIENT ANALYSIS 339

1149 param

General form 9:

.MEASURE {DC|AC|TRAN|SP} result param='expression’

Measure statement:

.param fval=5

.measure tran yadd param='fval + 7’

will evaluate the given expression fval + 7 and return the value 12.

"Expression’ 1s evaluated according to the rules given in Chapt. 2.11.5 during start up of ngspice.
It may contain parameters defined with the .param statement. It may also contain parameters
resulting from preceding .meas statements.

.param vout_diff=50u

.measure tran tdiff TRIG AT=1m TARG v(2) VAL=-0.8 CROSS=3
.meas tran bw_chk param='(tdiff < vout_diff) ? 1 : 0’

will evaluate the given ternary function and return the value 1 in bw_chk, if tdiff measured is
smaller than parameter vout_diff.

The expression may not contain vectors like v(10), e.g. anything resulting directly from a
simulation. This may be handled with the following .meas command option.

11.4.10 par(’expression’)

The par (’expression’) option (11.6.6) allows the use of algebraic expressions on the .measure
lines. Every out_variable may be replaced by par(’expression’) using the general forms 1...9
described above. Internally par(’expression’) is substituted by a vector according to the rules
of the B source (Chapt. 5.1). A typical example of the general form is shown below:

General form 10:

.MEASURE {DC|TRAN|AC|SP} result

+ FIND par('expression’) AT=val
The measure statement
.measure tran vtest find par(’(v(2)*v(1l)') AT=2.3m
returns the product of the two voltages at time point 2.3 ms.

Note that a B-source, and therefore the par(’...") feature, operates on values of type complex
in AC analysis mode.

Both param and par are not available for the meas command (13.5.50) inside of a .control
section, where meas with par or param may be replaced by let (13.5.45).

340 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

11.4.11 Deriv

General form:

.MEASURE {DC|AC|TRAN|SP} result DERIV<ATIVE> out_variable
+ AT=val

.MEASURE {DC|AC|TRAN|SP} result DERIV<ATIVE> out_variable
+ WHEN out_variable2=val <TD=td>

+ <CROSS=# | CROSS=LAST> <RISE=#|RISE=LAST>

+ <FALL=#|FALL=LAST>

.MEASURE {DC|AC|TRAN|SP} result DERIV<ATIVE> out_variable
+ WHEN out_variable2=out_variable3

+ <TD=td> <CROSS=# | CROSS=LAST>

+ <RISE=#|RISE=LAST> <FALL=#|FALL=LAST>

11.4.12 More examples

Some other examples, also showing the use of parameters, are given below. Corresponding
demonstration input files are distributed with ngspice in folder /examples/measure.

11.5. SAFE OPERATING AREA (SOA) WARNING MESSAGES 341

Other examples:

.meas tran inv_delay2 trig v(in) val='vp/2’ td=1n fall=1l

+ targ v(out) val='vp/2' rise=1

.meas tran test_datal trig AT = 1ln targ v(out)

+ val="vp/2’' rise=3

.meas tran out_slew trig v(out) val='0.2xvp’' rise=2
+ targ v(out) val='0.8+vp’' rise=2

.meas tran delay_chk param=’(inv_delay < 100ps) ? 1 : 0’
.meas tran skew when v(out)=0.6

.meas tran skew2 when v(out)=skew_meas

.meas tran skew3 when v(out)=skew_meas fall=2

.meas tran skew4 when v(out)=skew_meas fall=LAST

.meas tran skew5 FIND v(out) AT=2n

.meas tran vO_min min i(v0)

+ from="'dfall’ to='dfall+period’
.meas tran vO_avg avg i(vO)

+ from="dfall’ to='dfall+period’
.meas tran vO_integ integ i(v0O)

+ from="dfall’ to='dfall+period’
.meas tran vO_rms rms i(v0)

+ from="dfall’ to='dfall+period’

.meas dc is_at FIND i(vs) AT=1

.meas dc is_max max i(vs) from=0 to=3.5

.meas dc vds_at when i(vs)=0.01

.meas ac vout_at FIND v(out) AT=1MEG

.meas ac vout_atd FIND vdb(out) AT=1MEG

.meas ac vout_max max v(out) from=1lk to=10MEG

.meas ac freg_at when v(out)=0.1

.meas ac vout_diff trig v(out) val=0.1 rise=1 targ v(out)

+ val=0.1 fall=l
.meas ac fixed_diff trig AT = 10k targ v(out)
+ val=0.1 rise=1

.meas ac vout_avg avg v(out) from=10k to=1MEG
.meas ac vout_integ integ v(out) from=20k to=500k
.meas ac freq_at2 when v(out)=0.1 fall=LAST
.meas ac bw_chk param='(vout_diff < 100k) ? 1 : 0’
.meas ac vout_rms rms v(out) from=10 to=1G

11.5 Safe Operating Area (SOA) warning messages

By setting .option warn=1, the Safe Operation Area check algorithm is enabled. In this case
for .op, .dc and . tran analysis warning messages are issued if the branch voltages of devices
(Resistors, Capacitors, Diodes, BJTs and MOSFETs), or the currents and dissipated power
(Diodes, and BJTs), or the resulting temperature (Diodes) exceed limits that are specified by
model parameters. All these parameters are positive with default value of infinity. For the
bipolar VBIC model (11.5.3.3) .option warn=2 will add additional operating point info

342 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

The check is executed after Newton-Raphson iteration is finished i.e. in transient analysis in
each time step. The user can specify an additional .option maxwarns (default: 5) to limit the
count of messages.

The output goes on default to stdout or alternatively to a file specified by command line option
--soa-log=filename.

To achive SOA checking, add some or all of these parameters with suitable limit values to the
.model line of the respective device.

11.5.1 Resistor and Capacitor SOA model parameters

1. Bv_max: If IVrl or IVcl exceed Bv_max, SOA warning is issued.

11.5.2 Diode SOA model parameters

1. Bv_max: If IVjl exceeds Bv_max, SOA warning is issued.

2. Fv_max: If IVfl exceeds Fv_max, SOA warning is issued.

3. Id_max: If IIdl exceeds Id_max, SOA warning is issued.

4. Pd_max: If power exceeds Pd_max, SOA warning is issued.

5. Te_max: If temperature exceeds Te_max, SOA warning is issued.

6. rtho: Thermal resistance between junction and ambient.

7. tnom: Nominal temperature where all parameters have been measured at.

Three SOA modes are available. All modes check for Bv_max, Vf_max, and Id_max.

If self-heating (7.2.2) is switched on, and Te_max, tnom and rth0 are given, then a derating for
the maximam allowed power dissipation is calculated, and power and current temperature are
checked against their max. allowed values.

pdmax = pdmaxmod - (tempcurr - tnom)/rthO

If self-heating is switched off, and rtho and tnom are given, then a static max. power derating
is calculated, taking the device temperature (set by its default value 27 °C, or the global .temp
value, or the device specific instance parameter temp) into account. The reference temperature
is tnom.

pdmax = pdmaxmod - (temp - tnom)/rtho

If rtho or tnom are not given, no derating is calculated, the power disspation is simply checked
against Pd_max.

11.5. SAFE OPERATING AREA (SOA) WARNING MESSAGES 343

11.5.3 BJT SOA model parameters

11.5.3.1 Gummel-Poon (levels 1 and 2)

Bipolar device models level 1 and 2 are supported with all the SOA parameters named below.

0.

10.

. Vbe_max:

Vbc_max:

Vce_max:

. Vcs_max:

Ic_max:

Ib_max:

Pd_max:

Te_max:

rtho:

tnom:

If IVbel exceeds Vbe_max, SOA warning is issued.

If IVbcl exceeds Vbc_max, SOA warning is issued.

If IVcel exceeds Vce_max, SOA warning is issued.

If IVcsl exceeds Ves_max, SOA warning is issued.

If lIcl exceeds Ic_max, SOA warning is issued.

If IIbl exceeds Ib_max, SOA warning is issued.

If power exceeds Pd_max, SOA warning is issued.

If temperature exceeds Te_max, SOA warning is issued.
Thermal resistance between junction and ambient.

Nominal temperature where all parameters have been measured at.

Two SOA modes are available (self-heating is not yet modeled in bipolar level 1 and 2). All
modes check for Vbe_max, Vbc_max, Vce_max, Vcs_max, Ic_max and Ib_max.

If rtho and tnom are given, then a static max. power derating is calculated, taking the device
temperature (set by its default value 27 °C, or the global .temp value, or the device specific
instance parameter temp) into account. The reference temperature is tnom.

Pdmax = Pdmaxmod — (temp — tnom) /rthQ

If rtho or tnom are not given, no derating is calculated, the power disspation is simply checked

against Pd_max.

Te_max is not (yet) used.

11.5.3.2 HICUM (level 8)

HICUM2 currently aknowledges the following voltage parameters:

. Vbe_max:

Vbc_max:

. Vce_max:

Vcs_max:

If IVbel exceeds Vbe_max, SOA warning is issued.
If IVbcl exceeds Vbc_max, SOA warning is issued.
If IVcel exceeds Vce_max, SOA warning is issued.

If IVcsl exceeds Vcs_max, SOA warning is issued.

344 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

11.5.3.3 VBIC (levels 4 and 9)

VBIC aknowledges the following parameters:

1. Vbe_max: If IVbel exceeds Vbe_max, SOA warning is issued.
2. Vbc_max: If IVbcl exceeds Vbc_max, SOA warning is issued.
3. Vce_max: If IVcel exceeds Vce_max, SOA warning is issued.
4. Vcs_max: If IVcsl exceeds Vcs_max, SOA warning is issued.

As an alternative to the above listed parameters bvbe, bvbc, bvce, and bvsub may be used.

If .option warn=2 is set, the following parameters (defaults are set to 0.2 V) may be used to
determine the current operation point of the device.

1. vbefwd B-E forward voltage.

2. vbcfwd B-C forward voltage.

The following criteria are used:

’ op \ conditions

off Vbe <= vbefwd and Vbc <= vbcfwd
saturation Vbe > vbefwd and Vbc > vbcfwd
forward Vbe > vbefwd and Vbc <= vbcfwd
reverse Vbe <= vbefwd and Vbc > vbcfwd

Substrate leakage due to forward conduction of the collector-substrate diode may be detected
using:

1. vsubfwd Substrate junction forward voltage.

11.5.4 MOS SOA model parameters

1. Vgs_max: If IVgsl exceeds Vgs_max, SOA warning is issued.
2. Vgd_max: If IVgdl exceeds Vgd_max, SOA warning is issued.
3. Vgb_max: If IVgbl exceeds Vgb_max, SOA warning is issued.
4. Vds_max: If IVdsl exceeds Vds_max, SOA warning is issued.
5. Vbs_max: If IVbsl exceeds Vbs_max, SOA warning is issued.

6. Vbd_max: If IVbdl exceeds Vbd_max, SOA warning is issued.

11.6. BATCH OUTPUT 345

11.5.5 VDMOS SOA model parameters

1. Vgs_max: If IVgsl exceeds Vgs_max, SOA warning is issued.
2. Vgd_max: If IVgd| exceeds Vgd_max, SOA warning is issued.
3. Vds_max: If IVdsl exceeds Vds_max, SOA warning is issued.
4. Vgsr_max: If IVgsrl exceeds Vgsr_max, SOA warning is issued.

5. Vgdr_max: If IVgdrl exceeds Vgdr_max, SOA warning is issued.

11.6 Batch Output

The following commands .print (11.6.2), .plot (11.6.3) and . four (11.6.4) are valid only
if ngspice is started in batch mode (see 12.4.1), whereas .save and the equivalent . probe are
aknowledged in all operating modes.

If you start ngspice in batch mode using the -b command line option, the outputs of .print,
.plot, and . four are printed to the console output. You may use the output redirection of your
shell to direct this printout into a file (not available with MS Windows GUI). As an alternative,
you may extend the ngspice command by specifying an output file:

ngspice -b -o output.log input.cir

If you however add the command line option -r to create a rawfile, .print and .plot are
ignored. If you want to involve the graphics plot output of ngspice, use the control mode
(12.4.3) instead of the -b batch mode option.

11.6.1 .SAVE: Name vector(s) to be saved in raw file

General form:
.save vector vector vector ...
Examples:

.save i(vin) nodel v(node2)
.save @ml[id] vsource#branch
.save all @m2[vdsat]

The vectors listed on the . SAVE line are recorded in the rawfile for use later with ngspice. The
standard vector names are accepted. Node voltages may be saved by giving the nodename or
v(nodename). Currents through an independent voltage source are given by 1 (sourcename)
or sourcename#tbranch. Internal device data are accepted as @dev[param].

If no .SAVE line is given, then the default set of vectors is saved (node voltages and voltage
source branch currents). If .SAVE lines are given, only those vectors specified are saved. For
more discussion on internal device data, e.g. @ml[id], see Appendix, Chapt. 27.1. If you

346 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

want to save internal data in addition to the default vector set, add the parameter all to the
additional vectors to be saved. If the command .save vm(out) is given, and you store the
data in a rawfile, only the original data v (out) are stored. The request for storing the magnitude
is ignored, because this may be added later during rawfile data evaluation with ngspice. See
also the section on the interactive command interpreter (Chapt. 13.5) for information on how to
use the rawfile.

11.6.2 .PRINT Lines

General form:

.print prtype ovl <ov2 ... ov8>

Examples:

.print tran v(4) i(vin)
.print dc v(2) i(vsrc) v(23, 17)
.print ac vm(4, 2) vr(7) vp(8, 3)

The . print line defines the contents of a tabular listing of one to eight output variables. prtype
is the type of the analysis (DC, AC, TRAN, NOISE, or DISTO) for which the specified outputs are
desired. The form for voltage or current output variables is the same as given in the previous
section for the print command; Spice2 restricts the output variable to the following forms
(though this restriction is not enforced by ngspice):

V(N1<,N2>) | specifies the voltage difference between nodes N1 and N2.
If N2 (and the preceding comma) is omitted, ground (0) is
assumed. See the print command in the previous section
for more details. For compatibility with SPICE2, the
following five additional values can be accessed for the ac
analysis by replacing the ‘V’ in V(N1,N2) with:

VR Real part
VI Imaginary part
VM Magnitude
VP Phase
VDB | 20log10(magnitude)

I (VXXXXXXX) | specifies the current flowing in the independent voltage
source named VXXXXXXX. Positive current flows from
the positive node, through the source, to the negative node.
(Not yet implemented: For the ac analysis, the
corresponding replacements for the letter I may be made
in the same way as described for voltage outputs.)

Output variables for the noise and distortion analyses have a different general form from that of
the other analyses. There is no limit on the number of .print lines for each type of analysis.
The par (’expression’) option (11.6.6) allows the use of algebraic expressions in the .print
lines. .width (11.6.7) selects the maximum number of characters per line.

11.6. BATCH OUTPUT 347

11.6.3 .PLOT Lines

.plot creates a printer plot output.

General form:
.plot pltype ovl <(plol, phil)> <ov2 <(plo2, phi2)> ... ov8>
Examples:

.plot dc v(4) v(5) v(1)

.plot tran v(17, 5) (2, 5) i(vin) v(17) (1, 9)
.plot ac vm(5) vm(31, 24) vdb(5) vp(5)

.plot disto hd2 hd3(R) sim2

.plot tran v(5, 3) v(4) (0, 5) v(7) (0, 10)

The .plot line defines the contents of one plot of from one to eight output variables. pltype is
the type of analysis (DC, AC, TRAN, NOISE, or DISTO) for which the specified outputs are desired.
The syntax for the ovi is identical to that for the . print line and for the plot command in the
interactive mode.

The overlap of two or more traces on any plot is indicated by the letter ‘X’. When more than
one output variable appears on the same plot, the first variable specified is printed as well
as plotted. If a printout of all variables is desired, then a companion .print line should be
included. There is no limit on the number of .plot lines specified for each type of analysis.
The par(’expression’) option (11.6.6) allows the use of algebraic expressions in the .plot
lines.

11.6.4 .FOUR: Fourier Analysis of Transient Analysis Output
General form:

.four freq ovl <ov2 ov3 ...>
Examples:

.four 100K v(5)

The . four (or Fourier) line controls whether ngspice performs a Fourier analysis as a part of
the transient analysis. freq is the fundamental frequency, and ov1 is the desired vector to
be analyzed. The Fourier analysis is performed over the interval <TSTOP-period, TSTOP>,
where TSTOP is the final time specified for the transient analysis, and period is one period of
the fundamental frequency. The dc component and the first nine harmonics are determined. For
maximum accuracy, TMAX (see the .tran line) should be set to period/100.0 (or less for very
high-Q circuits). The par(’expression’) option (11.6.6) allows the use of algebraic expressions
in the . four lines.

348 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

As .four is available only when ngspice is executed in batch mode (12.4.1), and no rawfile
selected, you may consider the spec (13.5.87) or fft (13.5.33) commands, when using ngspice
in .control mode (with a .control section, 12.4.3).

11.6.5 .PROBE: Save device node currents, device power dissipation, or
differential voltages between arbitrary nodes

Command . probe enables current measurement at user specified device nodes, as well as (dif-
ferential) voltage measurements between device nodes.

11.6.5.1 Current measurement

Current measurement at a device node is achieved by automatically placing a Zero volt voltage
source (VSRC, 4.1) between the selected (or all) device node and the net attached to that node.
The positive pole of the VSRC is pointing out towards the net, the negative pole towards the
device. The resulting output vectors are using the Xx#branch notation (see examples below).
Only top level devices are accessible, so device inside of subcircuits are not considered.

Besides standard devices you may also measure currents at X instance lines (subcircuit calls). If
the subcircuit definition (.subckt line) uses named nodes, these are used instead of node numbers
(see device ul in the example below).

Be careful when .probe alli is given, because the many output vectors generated automati-
cally may require a large amount of memory to store all the current measurement vectors.

11.6. BATCH OUTPUT 349

General form for current measurements on all devices:
.probe alli

General form for current measurements on a 2- and multi-terminal device:
.probe I(device)

General form for current measurements on a multi-terminal device (one command per terminal):
.probe I(device,node)

Examples:

* measure current at every node of each device in the circuit
.probe <alli>

* measure current at node 1 of a two-terminal device
.probe I(R1)

* measure current at all nodes of a subcircuit invocation
.probe I(XU1)

* measure current at node 3 of a multi-terminal device M4
.probe I(MQ4,3)

Resulting output vectors:

rl#branch
mg4: s#branch

Resulting output vectors for .probe all (excerpt only, example file 555-timer-2.cir):

ra#branch : current, real, 14579 long

rb#branch : current, real, 14579 long
rl#branch : current, real, 14579 long
time : time, real, 14579 long [default scalel]
xul:cont#branch : current, real, 14579 long
xul:disc#branch : current, real, 14579 long
xul:gnd#branch : current, real, 14579 long
xul:out#branch : current, real, 14579 long
xul:reset#branch : current, real, 14579 long
xul:thres#branch : current, real, 14579 long
xul:trig#branch : current, real, 14579 long
xul:vcc#branch : current, real, 14579 long
xu2:l#branch : current, real, 14579 long

xu2:19#branch : current, real, 14579 long

350 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

Compared to the approach using command .options savecurrents the resulting vectors
from a .probe command are available for every simulation type including AC simulation.
A slight disadvantage may be that new nodes are added to the instance matrix, increasing sim-
ulation time (typically a little bit only).

11.6.5.2 (Differential) voltage measurement

Differential voltage measurements are achieved by placing a voltage controlled voltage source
(VCVS, E device) with its two inputs connected to the nodes specified by the user and gain 1.
The output is then saved in a vector with a leading vd_ in its name.

11.6. BATCH OUTPUT 351

General form for (differential) voltage measurements:

.probe v(nodel)
.probe vd(device:nodel:node2)
.probe vd(devicel:nodel, device2:node2)

device, devicel, and device2 are device names (first token in an instance line). nodel, node2
are either numbers (according to the node sequence in the instance line, e.g. 1, 2, 3, ...), or are
node names of known devices (d, g, s, b for MOS of JFET, c, b, e for bipolar.

Examples:

* voltage at node named nR1l
.probe v(nRl)

* voltage across a two-terminal device named R1
.probe vd(R1)

* voltage at instance node 1 of device m4
.probe vd(m4:1:0)

* voltage between nodes 1 and 3 of device m4
.probe vd(m4:1:3)

* voltage between node 1 of device m4 and node 3 of device m5
.probe vd(m4:1, m5:3)

* m4, m5 are MOS devices, so the following is equivalent:
.probe vd(m4:d, m5:s)

Resulting output vectors:

nR1

vd_R1
vd_m4:d:0
vd_m4:d:s
vd_m3:d_m5:s

11.6.5.3 Measurement of power dissipation in a device

A power consumption measurement of a device with n nodes consists of two steps: all n device
node currents i1, i2, ... , in are measured (seel1.6.5.1). Then all node voltages v1

vn are measured. A common virtual star point vref is calculated as the mean of all n
node voltages. Power is the sum of the products of each node current times its node voltage
minus vref.

P = ilx(vl-vref) + i2x(v2-vref) +...+ inx(vn-vref)

352 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

General form for power measurements:
.probe p(device)
Examples:

* power dissipation of a subcircuit device
.probe p(XUl)

* power dissipation in a MOS transistor
.probe p(MQl)

Resulting output vectors:

Xul:power

mqgl:power

All new items are added to the list of vectors named by . SAVE (see 11.6.1). If .save is not given,
only the newly generated . PROBE vectors are saved.

11.6.6 par(’expression’): Algebraic expressions for output
General form:

par('expression’)
output=par(’'expression’) $ not in .measure ac

Examples:
.four 1001 sql=par(’'v(1l)*xv(1l)")
.measure tran vtest find par(’'(v(2)*v(1l))') AT=2.3m
.print tran output=par(’v(1)/v(2)’) v(1) v(2)
.plot dc v(1) diff=par(’'(v(4)-v(2))/0.01") out222

With the output lines .four, .plot, .print, .saveandin .measure evaluation, itis pos-
sible to add algebraic expressions for output, in addition to vectors. All of these output lines
accept par(’expression’), where expression is any expression valid for a B source (see Chapt.
5.1). Thus expression may contain predefined functions, numerical values, constants, simula-
tor output like v(nl) or i(vdb), parameters predefined by a . param statement, and the variables
hertz, temper, and time. Note that a B-source, and therefore the par('...") feature, oper-
ates on values of type complex in AC analysis mode.

Internally the expression is replaced by a generated voltage node that is the output of a B source,
one node, and the B source implementing par(’...”). Several par(’...’) are allowed in each line,
up to 99 per input file. The internal nodes are named pa_00 to pa_99. An error will occur if
the input file contains any of these reserved node names.

11.7. MEASURING CURRENT THROUGH DEVICE TERMINALS 353

In .four, .plot, .print, .save, butnotin .measure, an alternative syntax
output=par (’expression’) is possible. par(’expression’) may be used as described above.
output is the name of the new node to replace the expression. So output has to be unique and
a valid node name.

The syntax of output=par (expression) is strict: no spaces are allowed between par and (’or
between (and ’. Also,(’ and ") both are required. There is not much error checking on your
input, so if there is a typo, for example, an error may pop up at an unexpected place.

11.6.7 .width

Set the width of a print-out or plot with the following card:
.with out = 256

Parameter out yields the maximum number of characters plotted in a row, if printing in columns
or an ASCII-plot is selected.

11.7 Measuring current through device terminals

11.7.1 Using the .probe command

Device currents (discrete devices or subcircuits) may be measured by the .probe command
(11.6.5). Voltage sources for measurements are placed in series to the devices nodes specified
by the user. For details please see (11.6.5).

11.7.2 Adding a voltage source in series

The ngspice matrix solver determines node voltages and currents through independent voltage
sources. So to measure the currents through a resistor, you may add a voltage source in series
with dc voltage 0.

Current measurement with series voltage source

xmeasure current through R1
Vi1lio01

R1105

R2 10 10

* will become

Vi1l1o01

R1 1115

Vmeas 11 0 dc 0

R2 10 10

and the current is available as
vmeas#branch

after simulation.

354 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

11.7.3 Using option ’savecurrents’

Current measurement by reading internal current data

xmeasure current through R1 and R2
Vi101

R1105

R2 10 10

.options savecurrents

The option savecurrents will add . save lines (11.6.1) like
.save @rl[i]
.save @r2[i]

to your input file information read during circuit parsing. These newly created vectors contain
the terminal currents of the devices R1 and R2.

You will find information of the nomenclature in Chapt. 27, also how to plot these vectors.
The following devices are supported: M, J, Q, D, R, C, L, B, F, G, W, S, I (see 2.3). For
MOSFETdevices only a subset of MOS1 to MOS9 current parameters are included per default
(but see options below). Devices in subcircuits are supported as well. The advantage of the data
obtained by .options savecurrents is that no extra nodes are required, because the data are
retrieved from internal nodes already existing.

This option however cannot be used in AC simulations, because complex data are not supported.
Vectors thus created will be empty after an AC simulation. So for AC you might use one of the
two methods (.probe or series voltage source) as previously described.

Be careful when choosing savecurrents in larger circuits, because 1 to 4 additional output
vectors are created per device and this may consume lots of memory.

Also note that the data thus retrieved may be delayed by on time step after a transient simulation.

For MOS1, BSIM3 and BSIM4 three special options are available, listing all currents as de-
scribed in chapters 31.6.1, 31.6.8 and 31.6.9 of the ngspice manual:

Current measurement for MOS transistors with BSIM3 or BSIM4 models:

*measure all currents of MOS1, BSIM3 and BSIM4 transistors
.options savecurrents_mosl
.options savecurrents_bsim3
.options savecurrents_bsim4

Chapter 12

Starting ngspice

12.1 Introduction

Ngspice consists of the simulator and a front-end for data analysis and plotting. Input to the
simulator is a netlist file, including commands for circuit analysis and output control. Interactive
ngspice can plot data from a simulation on a PC or a workstation display.

The usual way to run ngspice is by a console command, passing options and at least one netlist
file as a parameter. Multiple netlists are concatenated and treated as one, except when the first
file is a pure script with parameters (13.8).

Ngspice on Linux (and OSs like MacOS, Cygwin, BSD, Solaris ...) uses the X Window System
for plotting (see Chapt. 14.3) if the environment variable DISPLAY is available. (An X11 server
must first be installed on MacOS.) Otherwise, a console mode (non-graphical) interface is used.
If you are using X on a workstation, the DISPLAY variable should already be set; if you want
to display graphics on a system different from the one you are running ngspice or ngutmeg on,
DISPLAY should be of the form machine:0.0. See the appropriate documentation on the X
Window System for more details.

The MS Windows GUI version of ngspice has a native graphics interface (see Chapt. 14.1).

The front-end may be run as a separate ‘stand-alone’ program under the name ngnutmeg. ngnut-
meg is a subset of ngspice dedicated to data evaluation, still optionally compilable (Linux,
Mingw) for historical reasons. Ngnutmeg will read in the ‘raw’ data output file created by
ngspice - r or by the write command during an interactive ngspice session.

12.2 Where to obtain ngspice

The actual distribution of ngspice may be downloaded from the ngspice download web page.
The installation for Linux or MS Windows is described in the file INSTALL to be found in
the top level directory. You may also have a look at Chapt. 28 of this manual for compiling
instructions.

If you want to check out the source code that is actually under development, you may have a
look at the ngspice source code repository, which is stored using the Git Source Code Man-
agement (SCM) tool. The Git repository may be browsed on the Git web page, also useful for

355

http://sourceforge.net/projects/ngspice/files/
http://sourceforge.net/scm/?type=git&group_id=38962

356 CHAPTER 12. STARTING NGSPICE

downloading individual files. You may however download (or clone) the complete repository
including all source code trees from the console window (Linux, CYGWIN or MSYS/MINGW)
by issuing the command (in a single line)

git clone git://git.code.sf.net/p/ngspice/ngspice

You need to have Git installed, which is available for all three OSs. The whole source tree
is then available in <current directory>/ngspice. Compilation and local installation is again
described in INSTALL (or Chapt. 28). If you later want to update your files and download the
recent changes from SourceForge into your local repository, cd into the ngspice directory and
just type

git pull

git pull will not overwrite modified files in your working directory. To drop your local changes
first, you can run

git reset --hard

To learn more about git, which can be both powerful and difficult to master, please consult
http://git-scm.com/, especially: http://git-scm.com/documentation, which has pointers to docu-
mentation and tutorials.

12.3 Command line options for starting ngspice

Command Synopsis:

ngspice [-o logfile] [-r rawfile]l [-b 1 [-1 1 [input files]

The oudated, optional ngnutmeg may be called by
Command Synopsis:

ngnutmeg [-] [datafile ...]

Where data file is the standard ngspice rawfile.

Options are shown below.

http://git-scm.com/
http://git-scm.com/documentation

12.3. COMMAND LINE OPTIONS FOR STARTING NGSPICE

357

| Option |

Long option

\ Meaning

|

Don’t try to load the default data file ("rawspice.raw") if no
other files are given (ngnutmeg only, obsolete).

--no-spiceinit

Don’t try to source the file upon start-up. Normally
ngspice seeks to find it according to the search folder
sequence described in 12.6.

--terminal=TERM

The program is being run on a terminal with mfb name
term (obsolete).

--batch

Run in batch mode. Ngspice reads the default input source
(e.g. keyboard) or reads the given input file and performs
the analyses specified; output is either Spice2-like
line-printer plots ("ascii plots") or a ngspice rawfile. See
the following section for details. Note that if the input
source is not a terminal (e.g. using the IO redirection
notation of "<") ngspice defaults to batch mode (-i
overrides). This option is valid for ngspice only.

--Sserver

Run in server mode. This is like batch mode, except that a
temporary rawfile is used and then written to the standard
output, preceded by a line with a single "@", after the
simulation is done. This mode is used by the ngspice
daemon. This option is valid for ngspice only.

Example for using pipes from the console window:

cat adder.cir|ngspice -s|more

--interactive

Run in interactive mode. This is useful if the standard input
is not a terminal but interactive mode is desired. Command
completion is not available unless the standard input is a
terminal, however. This option is valid for ngspice only.

--rawfile=FILE

Use rawfile as the default file into which the results of the
simulation are saved. This option is valid for ngspice only.

--pipe

Allow a program (e.g., xcircuit) to act as a GUI frontend
for ngspice through a pipe. Thus ngspice will assume that
the input pipe is a tty and allow running in interactive
mode.

--output=FILE

All logs generated during a batch run (-b) will be saved in
outfile.

--help

A short help statement of the command line syntax.

--version

Prints a version information.

--autorun

Start simulation immediately, as if a control section
.control

run

.endc

had been added to the input file.

--soa-log=FILE

output from Safe Operating Area (SOA) check

--define

Set a variable (13.8.1), to be used in a .control section.
-D varl will set a boolean variable named varl,
-D var2=7 will set a variable with its value.

Further arguments to ngspice are taken to be ngspice input files, which are read and saved (if

358 CHAPTER 12. STARTING NGSPICE

running in batch mode then they are run immediately). Ngspice accepts Spice3 (and also most
Spice2) input files, and outputs ASCII plots, Fourier analyses, and node printouts as specified
in .plot, .four, and .print cards. If an out parameter is given on a .width card (11.6.7),
the effect is the same as set width = Since ngspice ASCII plots do not use multiple ranges,
however, if vectors together on a .plot card have different ranges they do not provide as much
information as they do in a scalable graphics plot.

For ngnutmeg, further arguments are taken to be data files in binary or ASCII raw file format
(generated with -r in batch mode or the write (see 13.5.107) command) that are loaded into
ngnutmeg. If the file is in binary format, it may be only partially completed (useful for exam-
ining output before the simulation is finished). One file may contain any number of data sets
from different analyses.

12.4 Starting options

12.4.1 Batch mode

Let’s take as an example the Four-Bit binary adder MOS circuit shown in Chapt. 17.6, stored
in a file adder-mos.cir. You may start the simulation immediately by calling

ngspice -b -r adder.raw -o adder.log adder-mos.cir

ngspice will start, simulate according to the .tran command and store the output data in a
rawfile adder.raw. Comments, warnings and info messages go to log file adder.log. Commands
for batch mode operation are described in Chapt. 11.

12.4.2 Interactive mode

If you call
ngspice

ngspice will start, load spinit (12.5) and .spiceinit (12.6, if available), and then waits for your
manual input. Any of the commands described in 13.5 may be chosen, but many of them are
useful only after a circuit has been loaded by

ngspice 1 -> source adder-mos.cir
others require the simulation to be done already (e.g. plot):

ngspice 2 ->run
ngspice 3 ->plot allv

If you call ngspice from the command line with a circuit file as parameter:
ngspice adder-mos.cir

ngspice will start, load the circuit file, parse the circuit (same circuit file as above, containing
only dot commands (see Chapt. 11) for analysis and output control). ngspice then just waits for
your input. You may start the simulation by issuing the run command. Following completion
of the simulation you may analyze the data by any of the commands given in Chapt. 13.5.

12.4. STARTING OPTIONS 359

12.4.3 Control mode (Interactive mode with control file or control sec-
tion)

If you add the following control section to your input file adder-mos.cir, you may call
ngspice adder-mos.cir
from the command line and see ngspice starting, simulating and then plotting immediately.

Control section:

* ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER
.control

save vcc#branch

run

plot vcc#branch

rusage all

.endc

Any suitable command listed in Chapt. 13.5 may be added to the control section, as well as
control structures described in Chapt. 13.6. Batch-like behavior may be obtained by changing
the control section to

Control section with batch-like behavior:

* ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER
.control

save vcc#branch

run

write adder.raw vcc#branch

quit

.endc

If you put this control section into a file, say adder-start.sp, you may just add the line
.include adder-start.sp

to your input file adder-mos.cir to obtain the batch-like behavior. In the following example
the line . tran ... from the input file is overridden by the tran command given in the control
section.

Control section overriding the .tran command:

* ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER
.control

save vcc#branch

tran 1n 500n

plot vcc#branch

rusage time

.endc

The commands within the . control section are executed in the order they are listed and only

360 CHAPTER 12. STARTING NGSPICE

after the circuit has been read in and parsed. If you want to have a command being executed
before circuit parsing, you may use the prefix pre_ (13.5.57) to the command.

A warning is due however: If your circuit file contains such a control section (.control ...
.endc), you should not start ngspice in batch mode (with -b as parameter). The outcome may
be unpredictable!

12.5 Standard configuration file spinit

At startup ngspice reads its configuration file spinit. spinit may be found in a path relative to
the location of the ngspice executable

..\share\ngspice\scripts. The path may be overridden by setting the environmental variable
SPICE_SCRIPTS to a path where spinit is located. Ngspice for Windows will additionally
search for spinit in the directory where ngspice.exe resides. If spinit is not found a warning
message is issued, but ngspice continues.

spinit contains a script, made of commands from Chapt. 13.5, that is run upon start up of
ngspice. Aliases (name equivalences) can be set. The asterisk ‘*’ comments out a line. If used
by ngspice, spinit will then load the XSPICE code models from a path relative to the current
directory where the ngspice executable resides, as well as OpenVAF compiled compact devices
models. You may also define absolute paths.

If the standard path for the libraries (see standard spinit above or /usr/local/lib/spice un-
der CYGWIN and Linux) is not adequate, you can add the ./configure options - -prefix=/usr
--libdir=/usr/1ib64 to set the codemodel search path to /usr/1ib64/spice. Besides the
standard 1ib only 1ib64 is acknowledged.

12.5. STANDARD CONFIGURATION FILE SPINIT 361

Standard spinit contents:

* Standard ngspice init file

alias exit quit

alias acct rusage all

x*x set the number of threads in openmp

x*x (to the number of physical cores)

xx default (if compiled with --enable-openmp) is: 2
set num_threads=8

if $?sharedmode
unset interactive
unset moremode
else
set interactive
set xlllineararcs
end

* comment out if central osdi management is set up
* unset osdi_enabled

* Load the codemodels

if $?xspice_enabled
codemodel ../lib/spice/spice2poly.cm
codemodel ../lib/spice/analog.cm
codemodel ../lib/spice/digital.cm
codemodel ../lib/spice/xtradev.cm
codemodel ../lib/spice/xtraevt.cm
codemodel ../lib/spice/table.cm

end

* Load the OpenVAF/0SDI models
if $?o0sdi_enabled
osdi ../lib/ngspice/BSIMBULK107.0sdi
osdi ../lib/ngspice/BSIMCMG.osdi
osdi ../lib/ngspice/psplO3_ngs.osdi
osdi ../lib/ngspice/vbic_4T_et_cf.osdi
end

Special care has to be taken when using the ngspice shared library. If you use ngspice.dll under
Windows OS, the standard is to use relative paths for the code models as shown above. However,
the path is relative to the calling program, not to the dll. This is fine when ngspice.dll and the
calling program reside in the same directory. If ngspice.dll is placed in a different directory,
please check Chapt. 28.2.

The Linux shared library ... t.b.d.

362 CHAPTER 12. STARTING NGSPICE

12.6 User defined configuration file .spiceinit

In addition to spinit you may define a (personal) configuration file .spiceinit and put it into any
of the following locations. The typical search sequence for .spiceinit is:

1. directory from where the netlist will be loaded

2. user provided directory (in env. variable SPICE_USERINIT_DIR)
3. current directory

4. HOME (Linux)

5. USERPROFILE (Windows).

HOME (Linux, Cygwin, macOS) may point to /home/<User name>, or /root if you are acting
as admin. USERPROFILE (MS Windows) is typically C:\Users\<User name>. To find out
what directory HOME or USERPROFILE are pointing to, enter the commands set or export
into a console window and search for the token.

In case of ngspice as a shared library item 1. of the list above may read
1. in the directory Infile_Path received from the caller (to be sent before initialization)

.spiceinit will be read in and executed after spinit, but before any other input file is read. It
may contain further scripts, set variables, or issue commands from Chapt.13.5 to override
commands given in sSpinit. For example set filetype=ascii will yield ASCII output in the
output data file (rawfile), instead of the compact binary format that is used by default. set
ngdebug will yield a lot of additional debug output. Any other contents of the script, e.g.
plotting preferences, may be included here also. If the command line option -n is used upon
ngspice start up, this file will be ignored.

.spiceinit for simulating IC designs with MOS transistor data from PDKs may contain:

* ,spiceinit for use with Skywater PDK and ngspice KLU

set ngbehavior=hsa ; set compatibility for reading
; PDK libs
set skywaterpdk ; omit some time consuming checks
; during lib loading
set ng_nomodcheck ; don’t check the model parameters
option noinit ; don’t print operating point data
option klu ; select KLU as matrix solver

optran 0 0 0 100p 2n 0 ; don’'t use dc operating point,
; but only transient op

set num_threads=8 should be set to the number of physical cores of the computer in use (here
for example 8 cores), set ngbehavior=hsa will ensure HSPICE compatibility with some
important and essential tweaks for the PDK, set skywaterpdk suppresses time consuming
checks during lib loading, assuming 4 nodes for a MOS device and adequately labled parame-
ters. set ng_nomodcheck will suppress some unwanted warnings, option noinit will sup-
press the (often lengthy) printing of the operating point results. option klu often will yield

12.7. ENVIRONMENTAL VARIABLES 363

simulation speed up by a factor of 2 or more. optran ... will skip usual operating point iter-
ations, which for very large circuits consume much time, and replace them by a time integrated
operating point estimation.

.spiceinit for simulating circuits containing PSPICE-compatible behavioural models may con-
tain:

* User defined ngspice init file
set filetype=ascii

*set ngdebug

xset outputpath=C:\Spice64\out
set ngbehavior = ltpsa

option sparse

set ngbehavior = ltpsa will provide PSPICE compatibility. option sparse (maybe omit-
ted) selects the venerable Sparse 1.3 matrix solver, which sometimes is much faster than klu.

Some editors on MS Windows refuse to save files with leading dot in their names. An alternative
name to .spiceinit is therefore spice.rc.

12.7 Environmental variables

12.7.1 Ngspice specific variables

SPICE_LIB_DIR default: /usr/local/share/ngspice (Linux, CYGWIN), C:\Spice\share\ngspice
(Windows)

SPICE_EXEC_DIR default: /usr/local/bin (Linux, CYGWIN), C:\Spice\bin (Windows)

SPICE_BUGADDR default: https://ngspice.sourceforge.io/bugrep.html
Where to send bug reports on ngspice.

SPICE_EDITOR default: vi (Linux, CYGWIN), notepad.exe (MINGW, Visual Studio)
Set the editor called in the edit command. Always overrides the EDITOR env. variable.

SPICE_ASCIIRAWFILE default: O
Format of the rawfile. 0 for binary, and 1 for ascii.

SPICE_NEWS default: $SPICE_LIB DIR/news
A file that is copied verbatim to stdout when ngspice starts in interactive mode.

SPICE_HELP_DIR default: $SPICE_LIB_DIR/helpdir

Help directory, not used in Windows mode

SPICE_HOST default: empty string
Used in the rspice command (probably obsolete, to be documented)

SPICE_SCRIPTS default: $SPICE_LIB_DIR/scripts
In this directory the spinit file will be searched.

364 CHAPTER 12. STARTING NGSPICE

SPICE_PATH default: $SPICE_EXEC_DIR/ngspice
Used in the aspice command (probably obsolete, to be documented)

NGSPICE_MEAS_PRECISION default: 5
Sets the number of digits if output values are printed by the meas(ure) command.

SPICE_NO_DATASEG_CHECK default: undefined
If defined, will suppress memory resource info (probably obsolete, not used on Windows
or where the /proc information system is available.)

NGSPICE_INPUT_DIR default: undefined
If defined, using a valid directory name, will add the given directory to the search path
when looking for input files (*.cir, *.inc, *.lib).

NGSPICE_OSDI_DIR default: undefined
If defined, using a valid directory name, will add the given directory to the search path
when looking for VA-Models shared library files (*.0sdi).

SPICE_USERINIT_DIR default: undefined
If defined, using a valid directory name, this is the first place to search for the user-defined
initialization file .spiceinit (or spice.rc). The search sequence then following is: current
directory, HOME directory, USERPROFILE directory

12.7.2 Common environment variables

TERM LINES COLS DISPLAY HOME PATH EDITOR SHELL POSIXLY_CORRECT

12.8 Memory usage

Ngspice started with batch option (-b) and rawfile output (-r rawfile) will store all simulation
data immediately into the rawfile without keeping them in memory. Thus very large circuits
may be simulated, the memory requested upon ngspice start up will depend on the circuit size,
but will not increase during simulation.

If you start ngspice in interactive mode or interactively with control section, all data will be kept
in memory, to be available for later evaluation. A large circuit may outgrow even Gigabytes of
memory. The same may happen after a very long simulation run with many vectors and many
time steps to be stored. Issuing the save <nodes> command will help to reduce memory
requirements by saving only the data defined by the command. You may also choose option
INTERP (11.1.4) to reduce memory usage.

12.9 Simulation time

Simulating large circuits may take an considerable amount of CPU time. If this is of importance,
you should compile ngspice with the flags for optimum speed, set during configuring ngspice

12.10. NGSPICE ON MULTI-CORE PROCESSORS USING OPENMP 365

compilation. Under Linux, MINGW, CYGWIN, and macOS there are bash scripts for compil-
ing in the main directory of the ngspice distribution, see chapter 28. The -O2 optimization flag
for compiling and linking is used.

Under MS Visual Studio, you will have to select the releaseOMP or release versions, which
includes optimization for speed.

Several simulation periods contribute to CPU time usage. There is the setup period, especially
time consuming when externally contributed PDKs have to be resolved, or large circuits are
loaded. Due to its data structure the KLU matrix solver (11.1.1) may be advantageous here.
A lengthy (transient) simulation comprises of two activities: solving the matrix and solving
the non-linear device equations. Again, KLU is often faster than Sparse while solving the
matrix. Device evaluation, especially for MOS transistors, is sped up by parallel processing
with OpenMP (12.10). Finally data evaluation may take some additional time.

XSPICE (see Chapt. 8 and II) is enabled as part of your compilation configuration. Then
the value of trtol (see 11.1.4) is set internally to 1 (instead of default 7) for higher precision if
XSPICE code model *A’ devices included in the circuit. This may double or even triple the CPU
time needed for any transient simulation, because the amount of time steps and thus iteration
steps is more than doubled.

You may enforce higher speed during XSPICE usage by setting the variable xtrtol in your
.spiceinit initialization file or in the .control section in front of the tran command (via set
xtrtol=2 using the set command 13.5.73) and override the above trtol reduction. Beware
however of precision or convergence issues if you use XSPICE "A’ devices, especially if xtrtol
is set to values larger than 2.

12.10 Ngspice on multi-core processors using OpenMP

12.10.1 Introduction

Today’s computers typically come with CPUs having more than one core. It will thus be useful
to enhance ngspice to make use of such multi-core processors.

Using circuits containing mostly transistors and e.g. the BSIM3 model, around 2/3 of the CPU
time is spent in evaluating the model equations (e.g. in the BSIM3Load() function). The same
happens with other advanced transistor models. Thus, such functions should be parallelized, if
possible. Solving the matrix takes about 10% to 50% of the CPU time, so parallel processing
in the matrix solver is sometimes of secondary interest only! Furthermore, such paralellization
is difficult to achieve with our Sparse and KLU matrix solvers.

Another alternative is using CUSPICE, that is ngspice (developpment based on ngspice-27)
designed for running massively parallel on NVIDIA GPUs. CUDA enhancements to C code are
applied. For LINUX, please see the user guide. For MS Windows, an executable is available at
the ngspice download pages.

12.10.2 Internals

A publication [1] has described a way to exactly do that using OpenMP, which is available on
many platforms and is easy to use, especially if you want to perform parallel processing of a
for-loop.

https://developer.nvidia.com/cuda-toolkit
http://ngspice.sourceforge.net/cuspice/CUSPICE_User_Guide.pdf
http://ngspice.sourceforge.net/download.html#exp1

366 CHAPTER 12. STARTING NGSPICE

Table 12.1: OpenMP performance

Threads CPU time [s] | CPU time [s]

Windows Linux
1 65.4 69.3
2 46.7 47 .4
4 37.2 36.9
6 33.6 33.6
8 32.4 32.4
12 35.7 31.7
16 38.2 34.3

To explain the implemented approach BSIM3 version 3.3.0 model was chosen, located in the
BSIM3 directory, as the first example. The BSIM3load() function in b3ld.c contains two nested
for-loops using linked lists (models and instances, e.g. individual transistors). Unfortunately
OpenMP requires a loop with an integer index. So in file B3set.c an array is defined, filled with
pointers to all instances of BSIM3 and stored in model->BSIM3InstanceArray.

BSIM3load() is now a wrapper function, calling the for-loop, which runs through functions
BSIM3LoadOMP(), once per instance. Inside BSIM3LoadOMP() the model equations are cal-
culated.

Typically it is necessary to use synchronization constructs such as mutexes when multiple
threads write to a common memory location. To avoid the performance degradation of such
synchronization, temporary per-thread memory locations are used within the for loop of the
BSIM3LoadOMP() function as defined in bsim3def.h. After all threads complete the for-loop,
the update to the matrix is done in an extra function BSIM3LoadRhsMat() in the main thread.

Then the thread programming needed is only a single line!!
#pragma omp parallel for
introducing the for-loop over the device instances.

This of course is made possible only thanks to the OpenMP guys and the clever trick on no
synchronization introduced by the above cited authors.

The time-measuring function getrusage () used with Linux or Cygwin to determine the CPU
time usage (with the rusage option enabled) counts tics from every core, adds them up, and
thus reports a CPU time value enlarged by a factor of 8 if 8 threads have been chosen. So now
ngspice is forced to use ftime for time measuring if OpenMP is selected.

12.10.3 Some results

Some results on an inverter chain with 627 CMOS inverters, BSIM4.7, 45 nm, running for
200ns, compiled with Visual Studio Community 2019 on Windows 10 (full optimization) or
gcc 7.4, SUSE Linux Leap 15.1, -O2, on a 19 9900K machine with 8 real cores (16 logical
processors using hyperthreading) and 32 GB of memory are shown in table 12.1.

So we see a ngspice speed up of more than a factor of two! Even on an Windows 7 notebook
with a dual core i7 processor, more than 1.5x improvement using two threads was attained. This
is consistent with the fact that roughly half of the CPU time is used for evaluating the device

12.11. SERVER MODE OPTION -S 367

model, half of the time for solving the matrix. Only the device evaluation is parallelized by
OpenMP. The time for doing this becomes negligible with 8 or more threads. Allowing more
than 8 threads (using the 8 physical cores) does not yield much improvement, even leads to a
slight increase of simulation time, because the code is not optimized for hyperthreading.

12.10.4 Usage

To state it clearly: OpenMP is installed inside the model equations of a particular model. It is
available in BSIM3 versions 3.3.0 and 3.2.4, but not in any other BSIM3 model, in BSIM4
versions 4.5, 4.6.5, 4.7 or 4.8, but not in any other BSIM4 model, and in B4SOI, version 4.4,
not in any other SOI model and in models added by the OSDI interface. Older parameter files
of version 4.6.x (x any number up to 5) are accepted, you have to check for compatibility.

OpenMP is enabled as a default during ngspice compilation with gcc on all operating systems.

Under MS Windows with Visual Studio the preprocessor flag USE_OMP, and the /openmp flag
in Visual Studio are enabled when selecting the ReleaseOMP configuration.

The number of threads has to be set manually by placing
set num_threads=4

into spinit or .spiceinit or in the control section of the SPICE input file. If OpenMP is enabled,
but num_threads not set, a default value num_threads=2 is set internally.

If you simulate a circuit, please keep in mind to select BSIM3 (levels 8, 49) version 3.2.4 or
3.3.0 (7.6.3.3), by placing this version number into your parameter files, BSIM4 (levels 14, 54)
version 4.5, 4.6.5, 4.7 or 4.8 (7.6.3.4), or B4SOI (levels 10, 58) version 4.4 (7.6.4). All other
transistor models run as usual (without multithreading support).

If you run ./configure with - -disable-openmp (or without USE_OMP preprocessor flag under
MS Windows), you will get only the standard, not paralleled BSIM3 and BSIM4 models, as has
been available from Berkeley. If OpenMP is selected and the number of threads set to 1, there
will be only a very slight CPU time disadvantage (typ. 3%) compared to the old, non OpenMP
build.

12.10.5 Literature

[1] R.K. Perng, T.-H. Weng, and K.-C. Li: "On Performance Enhancement of Circuit Simulation
Using Multithreaded Techniques", IEEE International Conference on Computational Science
and Engineering, 2009, pp. 158-165

12.11 Server mode option -s

A program may write the SPICE input to the console. This output is redirected to ngspice via
‘|’. ngspice called with the -s option writes its output to the console, which again is redirected
to a receiving program by ‘|’. In the following simple example cat reads the input file and
prints it content to the console, which is redirected to ngspice by a first pipe, ngspice transfers

its output (similar to a raw file, see below) to less via another pipe.

368 CHAPTER 12. STARTING NGSPICE

Example command line:

cat input.cir|ngspice -s|less

Under MS Windows you will need to compile ngspice as a console application (see Chapt.
28.2.4) for this server mode usage.

Example input file:

test -s

vi101

rl 10 2k

.options filetype=ascii
.save i(vl)

.dc vl -1 10.5

.end

If you start ngspice console with

ngspice -s

you may type in the above circuit line by line (not to forget the first line, which is a title and
will be ignored). If you close your input with ctrl Z, and return, you will get the following
output (this is valid for MINGW only) on the console, like a raw file:

Circuit: test -s
Doing analysis at TEMP = 27.000000 and TNOM = 27.000000

Title: test -s

Date: Sun Jan 15 18:57:13 2012

Plotname: DC transfer characteristic

Flags: real

No. Variables: 2

No. Points: ©

Variables:

No. of Data Columns : 2

0 v(v-sweep) voltage

1 i(vl) current

Values:

0 -1.000000000000000e+000
5.000000000000000e-004

1 -5.000000000000000e-001
2.500000000000000e-004

2 0.000000000000000e+000
0.000000000000000e+000

3 5.000000000000000e-001
-2.500000000000000e-004

12.12. PIPE MODE OPTION -P 369

4 1.000000000000000e+000
-5.000000000000000e-004

@@@ 122 5

The number 5 of the last line @@ 122 5 shows the number of data points, which is missing in
the above line No. Points: 0 because at the time of writing to the console it has not yet
been available.

ctrl Zis not usable here in Linux, a patch to install ctrl D instead is being evaluated.

12.12 Pipe mode option -p

A program may write a set of ngspice commands (see 13.5) to the console. This output is redi-
rected to ngspice via ‘|’. ngspice called with the -p option immediately executes the commands
and then exits. In the following simple example cat reads the input file and prints it content to
the console, which is redirected to ngspice by a pipe, ngspice executes the commands.

Example command line:
cat pipe-circuit.cir | ngspice -p

Under MS Windows you will need to compile ngspice as a console application (see Chapt.
28.2.4) for this pipe mode usage.

Example input file:

xpipe-circuit.cir
source circuit.cir
tran 10u 2m

write pcir.raw all

Example circuit file:

* Circuit.cir

V1 nO 0 SIN(O 10 1kHz)
Cl nl1 no 3.3nF

Rl1 0 nl 1k

.end

The raw file pcir.raw will contain the final simulation results.

370 CHAPTER 12. STARTING NGSPICE

12.13 Ngspice control via input, output fifos
Example bash script:

#!/usr/bin/env bash
NGSPICE_COMMAND="ngspice"

rm input.fifo
rm output.fifo

mkfifo input.fifo
mkfifo output.fifo

$NGSPICE_COMMAND -p -i <input.fifo >output.fifo &

exec 3>input.fifo
echo "I can write to input.fifo"

echo "Start processing..."
echo nn

echo "source circuit.cir" >&3
echo "unset askquit" >&3

echo "set nobreak" >&3

echo "tran 0.01ms 0.1ms">&3
echo "print n@" >&3

echo "quit" >&3

echo "Try to open output.fifo ..."
exec 4<output.fifo
echo "I can read from output.fifo"

echo "Ready to read..."
while read output
do
echo $output
done <&4

exec 3>&-
exec 4>&-

echo "End processing"

The bash script listed above (tested under Linux and Cygwin)
- launches ngspice in pipe mode (-p) in another thread.

- writes some commands to the ngspice input

12.14. COMPATIBILITY 371

- runs ngspice with the tran command
- reads the output and prints it onto the console.
The input file with a small circuit is:

Circuit.cir ;

* Circuit.cir

V1 nO 0 SIN(O 10 1kHz)
Cl nl1 no 3.3nF

Rl1 0 nl 1k

.end

12.14 Compatibility

ngspice is a direct derivative of spice3f5 from UC Berkeley and thus inherits all of the com-
mands available in its predecessor. Thanks to the open source policy of UCB (original spice3
from 1994 is still available here), several commercial variants have sprung off, either being more
dedicated to IC design or more concentrating on simulating discrete and board level electronics.
None of the commercial and almost none of the freely downloadable SPICE providers publishes
the source code. All of them have proceeded with the development, by adding functionality, or
by adding a more dedicated user interface. Some have kept the original SPICE syntax for their
netlist description, others have quickly changed some if not many of the commands, functions
and procedures. Thus it is difficult, if not impossible, to offer a simulator that acknowledges
all of these netlist dialects. ngspice includes some features that enhance compatibility that are
included automatically. This selection may be controlled to some extend by setting the com-
patibility mode. Others may be invoked by the user by small additions to the netlist input file.
Some of them are listed in this chapter, some will be integrated into ngspice at a later stage,
others will be added if they are reported by users.

12.14.1 Compatibility mode

The variable (13.7) ngbehavior sets the compatibility mode. Per default no compatibility mode
is selected. The compatibility status will be displayed in the output window.

set ngbehavior=1ltpsa

in Spinit or .spiceinit is a typical command, setting PSPICE and LTSPICE compatibility for the
whole netlist. Flag ’a’ may be combined with any of the flags listed below. By contrast

set ngbehavior=ps

(without ’a’) will set PSPICE compatibility only for libraries which are added by a .include
command. So you may keep your Spice3 compatible netlist, but including PSPICE device
models. The available compatibility flags are:

http://embedded.eecs.berkeley.edu/pubs/downloads/spice/index.htm

STARTING NGSPICE

372 CHAPTER 12.
| Flag | Ref. | Short description |
a complete netlist transformed
ps 12.14.5 PSPICE compatibility
hs | 12.14.10 HSPICE compatibility
spe | 12.14.9 Spectre compatibility
It 12.14.6 LTSPICE compatibility
s3 Spice3 compatibility
11 all (currently not used)
ki 12.14.8 KiCad compatibility
eg EAGLE compatibility
mc for 'make check’

Table 12.2: Compatibility flags

"s3' will disable some of the advanced ngspice features. 'eg’ will enable EAGLE compatible
voltage vector output.’mc’ is required when the command 'make check’ is to be executed.
Then all flags are reset, in addition the compatibility status output is suppressed. Flags 'ps’
and "hs’ are mutually exclusive.

The command ’'unset ngbehavior’ will remove the variable ngbehavior, thus resetting the
compatibility mode to the default (no compat mode is set).

12.14.2 Missing functions

You may add one or more function definitions to your input file, as listed below.

.func LIMIT(x,a,b) {min(max(x, a), b)}

.func PWR(x,a) {abs(x) *xx a}

.func PWRS(x,a) {sgn(x) * PWR(x,a)}

.func stp(x) {u(x)}

12.14.3 Devices

12.14.3.1 E Source with LAPLACE

see 5.2.5.

12.14.3.2 VSwitch

The VSwitch

S12 3110 SW

.MODEL SW VSWITCH(VON=5V VOFF=0V RON=0.1 ROFF=100K)

may become

12.14. COMPATIBILITY 373

al %v(1l) s%sgd(2 3) sw
.MODEL SW aswitch(cntl_off=0.0 cntl_on=5.0 r_off=1e5
+ r_on=0.1 log=TRUE)

The XSPICE option has to be enabled.

12.14.4 Controls and commands
12.14.4.1 .lib

The ngspice .lib command (see 2.10) requires two parameters, a file name followed by a library
name. If no library name is given, the line

.lib filename

should be replaced by

.inc filename

Alternatively, the compatibility mode (12.14.1) may be set to "ps’.

12.14.4.2 .incpslt

A special command to include model files is needed if the compatibility mode is set to "hs’,
for reading data from a PDK (12.14.10), but you want to co-simulate this (integrated) circuit
together with for example a power device which has a model that requires the compatibility
mode 'pslt’. The command

.incpslt filename

treats the included netlist from file filename, e.g. a subcircuit device model, as if its com-
patibility mode had been set to "pslt’ (12.14.7), but otherwise the netlist (including library
handling) is treated according to compatibility mode given at top level, typically "hs’ or none.

12.14.4.3 .step

Repeated analysis in ngspice is offered by a short script inside of a . control section (see Chapt.
13.8.8) added to the input file. A simple application (multiple dc sweeps) is shown below.

374 CHAPTER 12. STARTING NGSPICE

Input file with parameter sweep

parameter sweep
* resistive divider, R1 swept from start_r to stop_r
* replaces .STEP R1 1k 10k 1k

VDD 1 0 DC 1
.dc VDD 0 1 .1

.control
let start_r = 1Kk
let stop_r = 10k
let delta_r = 1k
let r_act = start_r
* loop
while r_act le stop_r
alter rl r_act
run
write dc-sweep.out v(2)
set appendwrite
let r_act = r_act + delta_r
end
plot dcl.v(2) dc2.v(2) dc3.v(2) dcd.v(2) dc5.v(2)
+ dc6.v(2) dc7.v(2) dc8.v(2) dc9.v(2) dclO.v(2)
.endc

.end

12.14.5 PSPICE Compatibility mode

If the variable (13.7) ngbehaviorissetto 'ps’ or 'psa’ with the commands
set ngbehavior=ps

or
set ngbehavior=psa

in spinit or .spiceinit, ngspice will translate all files that have been read into ngspice netlist
by the .include command (ps) or the complete netlist (psa) from PSPICE syntax to ngspice.
This feature allows reading of PSPICE (or TINA) compatible device libraries (psS) that are
often supplied by the semiconductor device manufacturers. Or you may choose to use complete
PSPICE simulation decks (psa). Some ngspice input files may fail, however. For example

12.14. COMPATIBILITY 375

ngspice\examples\memristor\memristor.sp will not do, because it uses the parameter Vt,
and vt is a reserved word in PSPICE.

PSPICE to ngspice translation details:

.model replacement in ako (a kind of) model descriptions

* replace the E source TABLE function by a B source pwl

* add predefined params TEMP, VT, GMIN to beginning of deck

* add predefined params TEMP, VT to beginning of each .subckt call
* add .functions limit, pwr, pwrs, stp, if, int

* replace
S1 DS DG GND SWN
.MODEL SWN VSWITCH(VON=0.55 VOFF=0.49
+ RON={1/(2*Mx* (W/LE)*(KPN/2)*10)} ROFF=1G)
by
asl %vd(DG GND) % gd(D S) aswn
.model aswn aswitch(cntl_off=0.49 cntl_on=0.55
+ r_off=1G r_on={1/(2*xM*x(W/LE)*(KPN/2)*10)} log=TRUE)

* replace & by &&
* replace | by |l
* replace T_ABS by temp and T_REL_GLOBAL by dtemp

* get the area factor for diodes and bipolar devices
dl nl n2 dmod 7—>dl nl n2 dmod area=7
g2 n1 n2 n3 [n4] bjtmod 1.35-—>92 nl n2 n3 n4 bjtmod area=1.35
g3 12 3 4 bjtmod 1.45-—>q92 1 2 3 4 bjtmod area=1.45

* Check for double "{{ }}’, replace the inner ’{’, ’}” by ’(’,’)’

* Limit for exp function (linear growth when exponent is larger than 14).

In ps or psa mode, ngspice will treat all .lib entries like .include. There is no hierarchically
library handling. So for reading HSPICE compatible libraries, you definitely have to unset the
ps mode, e.g. by not adding set ngbehavior=ps or disabling it by

unset ngbehavior=ps

12.14.6 LTSPICE Compatibility mode

If the variable (13.7) ngbehaviorissetto '1t’ or 'lta’ with the commands

set ngbehavior=1lt

376 CHAPTER 12. STARTING NGSPICE

or

set ngbehavior=1ta

in spinit or .spiceinit, ngspice will translate all files that have been read into ngspice netlist by
the .include command (It) or the complete netlist (Ita) from LTSPICE syntax to ngspice. This
feature allows reading of LTSPICE compatible device libraries or complete netlists.

Currently we offer only a subset of the documented or undocumented functions (uplim, dnlim,
uplim_tanh, dnlim_tanh). More user input is definitely required here!

This compatibility mode also adds a simple diode using the sidiode code model (8.2.32). The
diode model

dl a k dsl
.model dsl d(Roff=1000 Ron=0.7 Rrev=0.2 Vfwd=1
+ Vrev=10 Revepsilon=0.2 Epsilon=0.2 Ilimit=7 Revilimit=15)

is translated automatically to the equivalent code model diode

adl a k adsl
.model adsl sidiode(Roff=1000 Ron=0.7 Rrev=0.2 Vfwd=1
+ Vrev=10 Revepsilon=0.2 Epsilon=0.2 Ilimit=7 Revilimit=15)

RKM code compatibility:

* In LT compatibility mode ngspice will follow the RKM code notation. In addition to the
standard notation, resistor (R) and capacitor (C) values may also be entered according to
the following listings (the internally translated value is given after the ;):

RKM code for resistors

R1 1 0 4K7 4.7k

R2 1 0 4R7 ;4.7

R3 1 0 R47 ; 0.47

R4 1 0 470R ; 470

R5 1 0 47K ; 47k

R6 1 0 47K3 ; 47.3k

R7 1 0 470K ; 470k

R8 1 0 4Meg7 tcl=le-6 tc2=1e-9 dtemp=6

* ; 4.7Meg <-- Not defined in the RKM notation
R9 1 0 4L7 i 4.7m

R10 1 0 470L ; 470m
R11 1 0 4M7 ; 4.7m <-- This deviates fom the RKM notation

https://en.wikipedia.org/wiki/RKM_code

12.14. COMPATIBILITY 377

RKM code for capacitors

Cl1 10 4p7 ; 4.7p

C2 10 4n7 ; 4.7n

C3 10 4u7 ; 4.7u

C4 10 4m7 ;o 4.7m

C5 1 0 4F7 ; 4.7f <-- This deviates fom the RKM notation
C6 10 47p3 ; 4.73p

C7 10 470p ; 470p

C8 1 0 4u76 tcl=le-6 tc2=1le-9 dtemp=6

* ; 4.76u

C9 10 4m7 0 4.7m

Cl10 1 0 470nF ; 470n
Cll1 1 0 47fF ; 47f <-- This deviates fom the RKM notation

There are some exceptions to the RKM code notation:

« all letters may be entered upper or lower case, and will internally be transformed to lower
case.

* m, M always denote milli (1e-3).
* f, F denote femto (le-15), fF will be again femto

* meg, Meg denotes mega (1e6)

12.14.7 LTSPICE/PSPICE Compatibility mode

If the variable (13.7) ngbehaviorissetto 'ltps’ or ’'ltpsa’ with the commands
set ngbehavior=1ltps

or
set ngbehavior=1ltpsa

in spinit or .spiceinit, ngspice will translate all files that have been read into ngspice netlist by
the .include command (Itps) or the complete netlist (Itpsa) 12.14.6, 12.14.5 from LTSPICE and
PSPICE syntax to ngspice. This feature allows reading of LTSPICE and PSPICE compatible
device libraries or complete netlists.

12.14.8 KiCad Compatibility mode

KiCad will generate vector names containing ’/’. If the variable (13.7) ngbehavior is set to ki
with the command

set ngbehavior=ki

is setin .spiceinit (or plot line flag kicad is given 13.5.56), ngspice will place " around this
vector name. The mathematical operation ’division’ in the plot command will then work only
if spaces are placed around the division operator /.

378 CHAPTER 12. STARTING NGSPICE

12.14.9 Spectre Compatibility mode

If the variable (13.7) ngbehavior is set to spe with the command
set ngbehavior=spe

is set in .spiceinit Spectre compatibility mode is enabled. True compatibility today is still
far away. The only action available for now is the use of the MOS device instance parameter
nf. If nf is given and larger than 1 and Spectre (or HSPICE) compatibility is enabled, nf is
used as a divisor to the transistor width W given on the instance line. The resulting W/nf is now
used to select the suitable device model in the binning process. This procedure is of interest for
a multi-gate transistor, which has a total width of W, but each finger is model according to the
model given for W/nf.

12.14.10 HSPICE Compatibility mode

If the variable (13.7) ngbehavior is set to hs with the command
set ngbehavior=hs

is setin .spiceinit HSPICE compatibility mode is enabled. This mode allows to read libraries
with the .1ib command in a recursive fashion, as is required by HSPICE compatible process
development kits (PDKs) In addition the nf flag is enabled, as described in 12.14.9 .

12.15 Tests

The ngspice distribution is accompanied by a suite of test input and output files, located in the
directory ngspice/tests. Originally this suite was meant to see if ngspice with all models was
made and installed properly. It is started by

$ make check

from within your compilation and development shell. A sequence of simulations is thus started,
its outputs compared to given output files by comparisons string by string. This feature is mo-
mentarily used to check for some basic procedures and the XSPICE extension (8) as a regres-
sion test. Several other input files located in directory ngspice/tests may serve as light-weight
examples for invoking devices and simple circuits.

Today’s very complex device models (BSIM3 (7.6.3.3), BSIM4 (see 7.6.3.4), HiSIM (see 7.6.6)
and others) require a different strategy for verification. Under development for ngspice is the
CMC Regression test by Colin McAndrew, which accompanies every new model. These tests
cover a large range of different DC, AC and noise simulations with different geometry ranges
and operating conditions and are more meaningful the transient simulations with their step size
dependencies. A major advantage is the scalability of the diff comparisons, which check for
equality within a given tolerance. A set of Perl modules cares for input, output and comparisons
of the models. Currently BSIM3, BSIM4, BSIMSOI4, HICUM2, HiSIM, and HiSIM_HV
models implement the QA test. You may invoke it by running the command given above or by

12.16. TOOLS FOR DEBUGGING A CIRCUIT NETLIST 379

$ make -i check 2>&1 | tee results

-i will cause make to ignore any errors, and tee will provide console output as well as printing
to file ‘results’. Be aware that under MS Windows you will need the console binary (see 28.2.4)
to run the CMC tests, and you have to have Perl installed!

As these tests may consume a considerable amount of CPU time, there is a configure option
--enable-shortcheck 28.1.8.1 available, providing a strongly reduced runtime, because be-
sides some regression tests only BSIM3 and BSM4 devices are checked.

Other tests have been developed, there are also some benchmark circuit compilations available.
Please have a look at our Tests and Quality Assurance web page.

12.16 Tools for debugging a circuit netlist

This a chapter only in its initial state. Not all circuits will simulate immediately and easily. The
netlist may contain a bug. The netlist may be o.k., but then ngspice may not find an operating
point. If the operating point has been found, the transient simulation will just yield the famous
error message ’transient time step too small’. Unfortumately there are many reasons for failure,
on the other hand there is a lot of literature available to traet non-convergence.

So for now there will be listed here only a few ’tools’ offered by ngspice to aid debugging.

12.16.1 options and initial conditions

If ngspice has trouble finding the operating point, setting some initial conditions by adding
.nodeset (11.2.1) or .ic (11.2.2) for critical nodes may help. The variation of some op option
parameters may help as well (see 11.1.2). If there are nodes without dc connection to ground
(e.g. two capacitors in series connection), finding the operating point will fail. Here the option
RSHUNT may be of help by adding are (typically large) resistor from each node to ground.
Convergence may be improved by the RSERIES option that add a (typically small) resistor in
series to each inductor.

Transient simulations are governed by another set of options (see 11.1.4). Careful variation of
the parameters, as described in the literature, may enable convergence in incritical situations
(not guaranteed, however).

12.16.2 set debug

If set in .spiceinit (or spice.rc), the command set debug will yield an analysis of each com-
mand which is run from .spiceinit and .control.

12.16.3 set ngdebug

The command set ngdebug, if set in .spiceinit (spice.rc) provides some additional warning
messages. If ngspice has write access to the current directory, 3 or 4 files are saved to that
directory, showing the netlist at specific stages during parsing. Each file contain two parts,

http://ngspice.sourceforge.net/applic.html#test

380 CHAPTER 12. STARTING NGSPICE

the netlist without comment lines, followed by the same netlist including all comment lines.
debug-out. txt is available after pre-processing the netlist. debug-out2. txt shows the netlist
after parameter and subcircuit expansion. debug-out3.txt lists the final netlist. debug-out-
mc.txt is issued, when the netlist is reloaded after a reset or mc_source command.

During a transient simulation a vector ’speedcheck’ is generated in the current tran plot. The
independent variable is the scale vector ’time’, the dependent variable is the wall clock time
with a resolution of about 100 ms. So you may monitor the simulation progress of a (lengthy)
transient simulation and detect critical (simulated) times where the simulation may be slowed
down.

When ngspice is used as a shared library (15), the complete netlist sent to ngspice by the calling
process is returned to the caller by the callback function printfcn. Also return each command
received by the caller.

12.16.4 miscellaneous

Debugging the equations of a B source are described in chapt. 5.4.

Compiling ngspice with the ./configure flag - -enable-ftedebug or (for MS Visual Studio:
adding a preprocessor flag FTEDEBUG) will enable some additional warning messages.

Compiling ngspice with the ./configure flag - -enable-stepdebug or (for MS Visual Studio:
adding a preprocessor flag STEPDEBUG) yields a very powerful tool for analysing the steps of
a transient simulation. The amount of messages printed however is overwhelming and may be
interpreted by an insider only.

12.17 Reporting bugs and errors

Ngspice is a complex piece of software. The source code contains over 1500 files. Various
models and simulation procedures are provided, some of them not used and tested intensively.
Therefore errors may be found, some still evolving from the original spice3f5 code, others
introduced during the ongoing code enhancements.

If you happen to experience an error during the usage of ngspice, please send a report to the
development team. Ngspice is hosted on SourceForge, the preferred place to post a bug report
is the ngspice bug tracker. We would prefer to have your bug tested against the actual source
code available at Git, but of course a report using the most recent ngspice release is welcome!
Please provide the following information with your report:

Ngspice version
Operating system
Small input file to reproduce the bug

Actual output versus the expected output

http://sourceforge.net/tracker/?group_id=38962&atid=423915

Chapter 13

Interactive Interpreter

13.1 Introduction

The simulation flow in ngspice (input, simulation, output) may be controlled by dot commands
(see Chapt. 11 and 12.4.1) in batch mode. There is, however, a much more powerful control
scheme available in ngspice, traditionally coined ‘Interactive Interpreter’, but being much more
than just that. In fact there are several ways to use this feature, truly interactively by typing
commands to the input, but also running command sequences as scripts or as part of your input
deck in a quasi batch mode.

You may type in expressions, functions (13.2) or commands (13.5) into the input console to
elaborate on data already achieved from the interactive simulation session.

Sequences of commands, functions and control structures (13.6) may be assembled as a script
(13.8) into a file, and then activated by just typing the file name into the console input of an
interactive ngspice session.

Finally, and most useful, is to add a script to the input file, in addition the the netlist and dot
commands. This is achieved by enclosing the script into .controlendc (see 12.4.3,
and 13.8.8 for an example). This feature enables a wealth of control options. You may set
internal (13.7) and other variables, start a simulation, evaluate the simulation output, start a new
simulation based on these data, and finally make use of many options for outputting the data
(graphically or into output files).

Historical note: The final releases of Berkeley Spice introduced a command shell and scripting
possibilities. The former releases were not interactive. The choice for the scripting language
was an early version of ‘csh’, the C-shell, which was en vogue back then as an improvement
over the ubiquitous Bourne Shell. Berkeley Spice incorporated a modified csh source code that,
instead of invoking the unix ‘exec’ system call, executed internal SPICE C subroutines. Apart
from bug fixes, this is still how ngspice works.

One important difference from C-shell is that ngspice does not support multiple commands on
one line, separated by ’;’. In ngspice, semi-colons introduce a comment.

The csh-like scripting language is active in .control sections. It works on ‘strings’, and does
string substitution of ‘environment’ variables. You see the csh at work in ngspice with set foo
= "bar"; set baz = "bar$foo", and in if, repeat, for, ... constructs. However, ngspice
processes mainly numerical data, and support for this was not available in the c-sh implementa-
tion. Therefore, Berkeley implemented an additional type of variables, with different syntax, to

381

382 CHAPTER 13. INTERACTIVE INTERPRETER

access double and complex double vectors (possibly of length 1). This new variable type is mod-
ified with let, and can be used without special syntax in places where a numerical expression is
expected: let bar = 4 x 5; let zoo = bar * 4 works. Unfortunately, occasionally one
has to cross the boundary between the numeric and the string domain. For this purpose the $&
construct is available — it queries a variable in the numerical let domain, and expands it to a
c-sh string denoting the value. This lets you do do something like set another = "this is
$&bar". It is important to remember that set can only operate on (c-sh) strings, and that let
operates only on numeric data contained in vectors. Convert from numeric to string with $&,
and from string to numeric with $.

13.2 Expressions, Functions, and Constants

Ngspice stores data in the form of vectors: time, voltage, etc. Each vector has a type, and
vectors can be operated on and combined algebraically in ways consistent with their types.
Vectors are normally created as the output of a simulation, or when a data file (output raw file)
is read in again (ngspice using the the load command 13.5.48), or when the initial data-file is
loaded directly into ngnutmeg. They can also be created with the let command (13.5.45).

An expression is an algebraic formula involving vectors and scalars (a scalar is a vector of
length 1) and the following operations:

+_*/A°/°I

% is the modulo operator, and the comma operator has two meanings: if it is present in the
argument list of a user definable function, it serves to separate the arguments. Otherwise, the
term x , y is synonymous with x + j(y). Also available are the logical operations & (and),
| (or), ! (not), and the relational operations <, >, >=, <=, =, and <> (not equal). If used in an
algebraic expression they work like they would in C, producing values of 0 or 1. The relational
operators have the following synonymes:

| Operator | Synonym |

gt >
It <
ge >=
le <=
ne <>
and &
or I
not !
eq =

The operators are useful when < and > might be confused with the internal IO redirection (see
13.4, which is almost always happening). It is however safe to use < and > with the define
command (13.5.19).

The following functions are available:

13.2. EXPRESSIONS, FUNCTIONS, AND CONSTANTS

Name | Function
mag(vector) Magnitude of vector (same as abs(vector)).
ph(vector) Phase of complex vector, in radians.
cph(vector) Phase of complex vector, in radians. Continuous values, no
discontinuity at +7.
unwrap(vector) Phase of vector with real phase vector in degrees as input
and output. Continuous values, no discontinuity at +180.
j(vector) 1 (sqrt(-1)) times vector.
real(vector) The real component of vector.
imag(vector) The imaginary part of vector.
conj(vector) The complex conjugate of a vector
db(vector) 20 log10(mag(vector)).
log10(vector) The logarithm (base 10) of vector.
log(vector) The natural logarithm (base e) of vector.
In(vector) The natural logarithm (base e) of vector.
exp(vector) e to the vector power.
abs(vector) The absolute value of vector (same as mag).
sqrt(vector) The square root of vector.
sin(vector) The sine of vector.
cos(vector) The cosine of vector.
tan(vector) The tangent of vector.
atan(vector) The inverse tangent of vector.
sinh(vector) The hyperbolic sine of vector.
cosh(vector) The hyperbolic cosine of vector.
tanh(vector) The hyperbolic tangent of vector.
atanh(vector) The inverse hyperbolic tangent of vector.
floor(vector) Largest integer that is less than or equal to vector.
ceil(vector) Smallest integer that is greater than or equal to vector.
norm(vector) The vector normalized to 1 (i.e, the largest magnitude of
any component is 1).
mean(vector) The result is a scalar (a length 1 vector) that is the mean of
the elements of vector (elements values added, divided by
number of elements).
avg(vector) The average of a vector.
Returns a vector where each element is the mean of the
preceding elements of the input vector (including the
actual element).
stddev(vector) The result is a scalar (a length 1 vector) that is the standard

deviation of the elements of vector .

group_delay(vector)

Calculates the group delay —dphase[rad]/dw|rad/s).
Input is the complex vector of a system transfer function
versus frequency, resembling damping and phase per
frequency value. Output is a vector of group delay values
(real values of delay times) versus frequency.

vector(number)

The result is a vector of length number, with elements 0, 1,
... number - 1. If number is a vector then just the first
element is taken, and if it isn’t an integer then the floor of
the magnitude is used.

383

384

CHAPTER 13. INTERACTIVE INTERPRETER

| Name

| Function

cvector(number)

Return a vector of length number, containing complex
elements, with the real part values increasing from 0 to
number-1, the imaginary values are set to 0.

unitvec(number)

The result is a vector of length number, all elements having
a value 1.

integ(vector)

Integrates over the given vector (versus the real component
of the scale vector), using the trapeziodal method. The
result is another vector, showing the integral up to the
current scale value. See also 11.4.8 for measuring the
integral sum for a section of a vector, and 8.2.17 for
integration on the fly during a transient simulation.

deriv(vector)

Calculates the derivative of the given vector. This uses
numeric differentiation by interpolating a polynomial. The
degree of the polynomal may be set by the variable
dpolydegree (default is 2). The procedure may not
produce satisfactory results (particularly with iterated
differentiation). The implementation only calculates the
derivative with respect to the real component of that
vector’s scale.

vecd(vector)

Compute the differential of a vector.

vecmin(vector)

Returns the value of the vector element with minimum
value. Same as minimum.

minimum(vector)

Returns the value of the vector element with minimum
value. Same as vecmin.

vecmax(vector)

Returns the value of the vector element with maximum
value. Same as maximum.

maximum(vector)

Returns the value of the vector element with maximum
value. Same as vecmax.

fft(vector)

fast fourier transform (13.5.33)

ifft(vector)

inverse fast fourier transform (13.5.33)

sortorder(vector)

Returns a vector with the positions of the elements in a real
vector after they have been sorted into increasing order
using a stable method (gsort).

timer(vector)

Returns CPU-time minus the value of the first vector
element.

clock(vector)

Returns wall-time minus the value of the first vector
element.

Several functions offering statistical procedures are listed in the following table:

13.2. EXPRESSIONS, FUNCTIONS, AND CONSTANTS 385

Name Function
rnd(vector) A vector with each component a random integer between 0
and the absolute value of the input vector’s corresponding
integer element value.
sgauss(vector) Returns a vector of random numbers drawn from a
Gaussian distribution (real value, mean = O , standard
deviation = 1). The length of the vector returned is
determined by the input vector. The contents of the input
vector will not be used. A call to sgauss(0) will return a
single value of a random number as a vector of length 1.
sunif(vector) Returns a vector of random real numbers uniformly
distributed in the interval [-1 .. 1[. The length of the vector
returned is determined by the input vector. The contents of
the input vector will not be used. A call to sunif(0) will
return a single value of a random number as a vector of
length 1.
poisson(vector) Returns a vector with its elements being integers drawn
from a Poisson distribution. The elements of the input
vector (real numbers) are the expected numbers A.
Complex vectors are allowed, real and imaginary values
are treated separately.
exponential(vector) Returns a vector with its elements (real numbers) drawn
from an exponential distribution. The elements of the input
vector are the respective mean values (real numbers).
Complex vectors are allowed, real and imaginary values
are treated separately.

An input vector may be either the name of a vector already defined or a floating-point number
(a scalar). A scalar will result in an output vector of length 1. A number may be written in
any format acceptable to ngspice, such as 14.6Meg or -1.231e-4. Note that you can either use
scientific notation or one of the abbreviations like MEG or G, but not both. As with ngspice, a
number may have trailing alphabetic characters.

The notation expr [num] denotes the num’th element of expr. For multi-dimensional vectors,
a vector of one less dimension is returned. Also for multi-dimensional vectors, the notation
expr[m][n] will return the nth element of the mth subvector. To get a subrange of a vector, use
the form expr[lower, upper]. To reference vectors in a plot that is not the current plot (see the
setplot command, below), the notation plothame.vechame can be used. Either a plotname or
a vector name may be the wildcard all. If the plotname is all, matching vectors from all plots
are specified, and if the vector name is all, all vectors in the specified plots are referenced. Note
that you may not use binary operations on expressions involving wildcards - it is not obvious
what all + all should denote, for instance. Some (contrived) examples of expressions are shown
below.

386 CHAPTER 13. INTERACTIVE INTERPRETER

Expressions examples:

cos(TIME) + db(v(3))

sin(cos(log([1 234567 89 10]1)))

TIME * rnd(v(9)) - 15 *x cos(vin#branch) ~ [7.9e5 8]
not ((ac3.FREQ[32] & tranl.TIME[10]) gt 3)
(sunif(0) ge 0) ? 1.0 : 2.0

mag (fft(v(18)))

Vector names in ngspice may look like @dname[param], where dname is either the name of
a device instance or of a device model. The vector contains the value of the parameter of the
device or model. See Appendix, Chapt. 27 for details of which parameters are available. The
returned value is a vector of length 1. Please note that finding the value of device and device
model parameters can also be done with the show command (e.g. show vl : dc).

There are a number of pre-defined constants in ngspice, which you may use by their name. They
are stored in plot (13.3) const and are listed in the table below:

Name | Description | Value |
pi T 3.14159...
e e (the base of natural logarithms) 2.71828...
c ¢ (the speed of light) 299,792,458 m/sec
i i (the square root of -1) V-1
kelvin (absolute zero in centigrade) -273.15°C
echarge q (the charge of an electron) 1.60219e-19 C
boltz k (Boltzmann’s constant) 1.38062e-237/k
planck h (Planck’s constant) 6.62607e-34J s
yes boolean 1
no boolean 0
TRUE boolean 1
FALSE boolean 0

These constants are all given in MKS units. If you define another variable with a name that
conflicts with one of these then it takes precedence.

Additional constants may be generated during circuit setup (see .csparam, 2.13).

13.3 Plots

The output vectors of any analysis are stored in plots, a traditional SPICE notion. A plot is a
group of vectors. A first tran command will generate several vectors within a plot tranl. A
subsequent tran command will store their vectors in tran2. Then a linearize command will
linearize all vectors from tran2 and store them in tran3, which then becomes the current plot. A
fft will generate a plot specl, again now the current plot. The display command always will
show all vectors in the current plot. Echo $plots followed by Return lists all plots generated
so far. Setplot followed by Return will show all plots and ask for a (new) plot to become
current. A simple Return will end the command. Setplot name will change the current plot to
‘name’ (e.g. setplot tran2 will make tran2 the current plot). A sequence name.vector may
be used to access the vector from a foreign plot.

13.4. COMMAND INTERPRETATION 387

You may generate plots by yourself: setplot new will generate a new plot named unknownl,
set curplottitle="a new plot” will seta title, set curplotname=myplot will set its name
as a short description, set curplotdate="Sat Aug 28 10:49:42 2010” will set its date.
Note that strings with spaces have to be given with double quotes.

Of course the notion ’plot’ will be used by this manual also in its more common meaning,
denoting a graphics plot or being a plot command. Be careful to get the correct meaning.

13.4 Command Interpretation

13.4.1 On the console

On the ngspice console window (or into the Windows GUI) you may directly type in any com-
mand from 13.5. Within a command sequence, Input/output redirection is available (see Chapt.
13.8.9 for an example) - the symbols >, >>, >& >>§, and < have the same effects as in the
C-shell. This I/O-redirection is internal to ngspice commands, and should not be mixed up with
the ‘external’ I/O-redirection offered by the usual shells (Linux, MSYS etc.), see 13.5.80.

13.4.2 Scripts

If a word is typed as a command, and there is no built-in command with that name, the direc-
tories in the sourcepath list are searched in order for a file with the name given by the word.
If it is found, it is read in as a input file (as if it were sourced). Such a file will often be a pure
script containing only interpreter commands. Such files can be written to externd the command
set. Full details of scripting are in (13.8).

There are various command scripts installed in /usr/local/lib/spice/scripts (or what-

ever the path is on your machine), and the default sourcepath (13.7) includes this directory,
so you can use these command files (almost) like built-in commands.

13.4.3 Add-on to circuit file

Probably the most common way to invoke the commands described in the following Chapt.
13.5istoadd a .controlendc section to the circuit input file (see 12.4.3).

388 CHAPTER 13. INTERACTIVE INTERPRETER

Example:

.control

pre_set strict_errorhandling

unset ngdebug

xsave outputs and specials

save x1.x1.x1.7 V(9) V(10) V(11) V(12) V(13)

run

display

* plot the inputs, use offset to plot on top of each other
plot v(1) v(2)+4 v(3)+8 v(4)+12 v(5)+16 v(6)+20 v(7)+24 v(8)+28
* plot the outputs, use offset to plot on top of each other
plot v(9) v(10)+4 v(11)+8 v(12)+12 v(13)+16

.endc

13.5 Commands

Commands marked with a * are only available in standard ngspice, not in shared ngspice. Those

marked with ** are available in shared ngspice only.

13.5.1 Ac: Perform an AC, small-signal frequency response analysis

General Form:

ac (DEC | OCT | LIN) N Fstart Fstop

Do an small signal ac analysis (see also Chapt. 11.3.1) over the specified frequency range.
DEC decade variation, and N is the number of points per decade.

OCT stands for octave variation, and N is the number of points per octave.

LIN stands for linear variation, and N is the number of points.

fstart is the starting frequency, and fstop is the final frequency.

Note that in order for this analysis to be meaningful, at least one independent source must have

been specified with an ac value.

In this ac analysis all non-linear devices are linearized around their actual dc operating point.
Each Ls and Cs gets its imaginary value based on the actual frequency step. Each output vector
will be calculated relative to the input voltage (current) given by the ac value (Iin equals to 1
in the example below). The resulting node voltages (and branch currents) are complex vectors.

Therefore you have to be careful using the plot command.

13.5. COMMANDS 389

Example:

x AC test
Iin 10 AC1
R1 12 100
L1201

.control

AC LIN 101 10 10K

plot v(2) $ real part !

plot mag(v(2)) $ magnitude

plot db(v(2)) $ same as vdb(2)

plot imag(v(2)) $ imaginary part of v(2)
plot real(v(2)) $ same as plot v(2)

plot phase(v(2)) $ phase in rad

plot cph(v(2)) $ phase in rad, continuous beyond pi
plot 180/PIxphase(v(2)) $ phase in degrees
set units = degrees

plot phase(v(2)) $ phase in degrees

.endc

.end

In addition to the plot examples given above you may use the variants of vxx(node) described in
Chapt. 11.6.2 like vdb(2). If you apply this notion to another plot ac3, the term vdb(ac3.2)
is 0.k., however ac3.vdb(2) is not.

An option to suppress OP analysis before AC may be set for linear circuits (11.1.3).

Output parameters like @m1[cgs] or @rl[i] (see 27) are not supported during AC simulation.

13.5.2 Alias: Create an alias for a command
General Form:

alias [word] [text ...]

Causes word to be aliased to text. History substitutions may be used, as in C-shell aliases.

13.5.3 Alter: Change a device or model parameter

Alter changes the value for a device or a specified parameter of a device or model.

General Form:

alter dev = <expression>
alter dev param = <expression>
alter @dev[param] = <expression>

390 CHAPTER 13. INTERACTIVE INTERPRETER

<expression> must be real (complex isn’t handled right now, integer is fine though, but no
strings. For booleans, use 0/1).

Old style (pre 3f4):

alter device value
alter device parameter value [parameter value]

Using the old style, its first form is used by simple devices that have one principal value (resis-
tors, capacitors, etc.) where the second form is for more complex devices (bjt’s, etc.). Model
parameters can be changed with the second form if the name contains a ‘#’. For specifying a
list of parameters as values, start it with ‘[’, followed by the values in the list, and end with ‘]°.
Be sure to place a space between each of the values and before and after the ‘[* and ‘]°.

Some examples are given below:

Examples (Spice3f4 style):

alter vd = 0.1

alter vg dc = 0.6

alter @ml[w]= 15e-06

alter @vg[sin] [-1 1.5 2MEG]
alter @Vi[pwl] = [0 1.2 100p 0]

alter may have vectors (13.8.2) or variables (13.8.1) as parameters.

Examples (vector or variable in parameter list):

let newfreq = 10k

alter @vgl[sin] [-1 1.5 $&newfreq] $ vector
set newperiod = 150u

alter @Vi[pwl] = [0 1.2 $newperiod 0] $ variable

You may change a parameter of a device residing in a subcircuit, e.g. of MOS transistor msubl
in subcircuit xm1 (see also Chapt. 27.1).

Examples (parameter of device in subcircuit):

alter m.xml.msubl w

= 20u
alter @m.xml.msubl[w] =

20u

13.5. COMMANDS 391

13.5.4 Altermod: Change model parameter(s)

General form:

altermod mod param = <expression>
altermod @mod[param] = <expression>

Example:

altermod ncl tox = 10e-9
altermod @ncl[tox] = 10e-9

Altermod operates on models and is used to change model parameters. The above example
will change the parameter tox in all devices using the model ncl, which is defined as

**xx BSIM3v3 model

.MODEL ncl nmos LEVEL=8 version = 3.2.2

+ acm = 2 mobmod = 1 capmod = 1 noimod =1
+ rs = 2.84E+03 rd = 2.84E+03 rsh = 45

+ tox = 20E-9 xj = 0.25E-6 nch = 1.7E+17
+ ...

If you invoke the model by the MOS device

M1 d g s b ncl w=10u 1=1u

you might also insert the device name M1 for mod as in
altermod M1 tox = 10e-9

The model parameter tox will be modified, however not only for device M1, but for all devices
using the associated MOS model nc1!

If you want to run corner simulations within a single simulation flow, the following option of
altermod may be of help. The existing models are defined during circuit setup at start up of
ngspice. Model parameter sets have been included by .model statements (2.5) in your input
file or included by the .include command. The parameter set with name ncl may be overrun
by the altermod command specifying a model file. All parameter values fitting to the existing
model ncl will be modified. As usual the 'reset’” command (see 13.5.65) restores the original
values. The model file (see 2.5) has to use the standard specifications for an input file, the
.model section is the relevant part. However the first line in the model file will be ignored by
the input parser, so it should contain only some title information. The .model statement should
appear then in the second or any later line. More than one .model section may reside in the file.

392 CHAPTER 13. INTERACTIVE INTERPRETER

General form:

altermod modl [mod2 .. modl5] file = <model file name>
altermod modl [mod2 .. modl5] file <model file name>
Example:

altermod ncl file = BSIM3_nmos.mod
altermod ncl pcl file BSIM4_mos.mod

Be careful that the new model file corresponds to the existing model selected by token nc1. In
the example given above, the models Nc1 (or nc1 and pc1) have to be already included in the
netlist before calling altermod. If they are not found in the active circuit, ngspice will terminate
with an error message. The file BSIM3_nmos.mod has to include a .model line starting with
.MODEL nc1 nmos.... There is no checking however of the version and level parameters! So
you have to be responsible for offering model data of the same model name (nc1) and level
(e.g. level 8 for BSIM3). Thus no new model is selectable by altermod, but the parameters of
the existing model(s) (here nc1 and pc1) may be changed (partially, completely, temporarily).

13.5.5 Alterparam: Change value of a global parameter

General form:

alterparam paramname=pvalue
alterparam subname paramname=pvalue

Example (global, top level parameter):

.param npar = 5

alterparam npar = 7 $ change npar from 5 to 7
reset

Example (parameter in a subcircuit):

.subckt sname
.param subpar = 13

.ends
alterparam sname subpar = 11 $ change subpar from 13 to 11
reset

Alterparam operates on global parameters or on parameters in a subcircuit defined by the
.param ... statement. A subsequent call to reset (13.5.65) is required for the parameter
value change to become effective.

13.5. COMMANDS 393

13.5.6 Asciiplot: Plot values using old-style character plots

General Form:

asciiplot plotargs

Produce a line printer plot of the vectors. The plot is sent to the standard output, or you can
put it into a file with asciiplot args ... > file. The set options width, height, and nobreak
determine the width and height of the plot, and whether there are page breaks, respectively.
The 'more’ mode is the standard mode if printing to the screen, that is after a number of lines
given by height, and after a page break printing stops with request for answering the prompt
by <return>, ’c’ or ’q’. If everything shall be printed without stopping, put the command set
nomoremode into .Sspiceinit 12.6 (or spinit 12.5). Note that you will have problems if you try
to asciiplot something with an X-scale that isn’t monotonic (i.e, something like sin(TIME)
), because asciiplot uses a simple-minded linear interpolation. The asciiplot command
doesn’t deal with log scales or the delta keywords.

13.5.7 Aspice*: Asynchronous ngspice run
General Form:

aspice input-file [output-file]
Start an ngspice run, and when it is finished load the resulting data. The raw data is kept in
a temporary file. If output-file is specified then the diagnostic output is directed into that file,
otherwise it is thrown away.

13.5.8 Bg_ctrl**: suspend running controls until bg_run has finished

General Form:

bg_ctrl

Create a suspended thread to start any control commands only when bg_run has finished. This
may be achieved also by issuing set controlswait in the beginning of a .control section.

13.5.9 Bg_halt**; halt a run

General Form:

bg_halt

Halt a run which has been started by bg_run. There may be conditions where this command
cannot be executed immediately.

394 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.10 Bg_run®**: Run analysis from the input file in the background
thread

General Form:

bg_run
Run the simulation as specified in the input file in the second (background) thread of shared
ngspice. If there were any of the control lines .ac, .op, .tran, or .dc, they are executed. The

output is available in plots and their vectors, and/or in the API via callback function SendData
(15.3.3.4).

13.5.11 Bug: Output URL for ngspice bug tracker

General Form:

bug
Get URL to file a bug report. Please go the the URL provided by this command when you have
a bug report to file. Include a short summary of the problem, the version number and name of

the operating system that you are running, the version of ngspice that you are running, and any
relevant ngspice input and output files.

13.5.12 Cd: Change directory

General Form:

cd [directory]

Change the current working directory to directory, or to the user’s home directory (Linux:
HOME, MS Windows: USERPROFILE), if none is given.

13.5.13 Cdump: Dump the control flow to the screen

General Form:

cdump

Dumps the control sequence to the screen (all statements inside the .controlendc struc-
ture before the line with cdump). Indentations show the structure of the sequence. The example
below is printed if you add edump to /examples/Monte_Carlo/MonteCarlo.sp.

13.5. COMMANDS 395

Example (abbreviated):

let mc_runs=5
let run=0

define agauss(nom, avar, sig) (nom + avar/sig * sgauss(0))
define limit(nom, avar) (nom + ((sgauss(0) >=0) ? avar : -avar))
dowhile run < mc_runs

alter cl=unif(le-09, 0.1)

ac oct 100 250k 1Omeg

meas ac bw trig vdb(out) val=-10 rise=1 targ vdb(out)
+ val=-10 fall=1l

set run="$&run"

let run=run + 1
end
plot db({$scratch}.allv)
echo
print {$scratch}.bwh
cdump

13.5.14 Circbyline: Enter a circuit line by line

General Form:

circbyline line

Enter a circuit line by line. line is any circuit line, as found in the *.cir ngspice input files.
The first line is a title line. The entry will be finished by entering .end. Circuit parsing is then
started automatically.

Example:

circbyline test circuit
circbyline v1 1 0 1
circbyline r1 1 01
circbyline .dc vl 0.5 1.5 0.1
circbyline .end

run

plot i(vl)

396 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.15 Codemodel: Load an XSPICE code model library

General Form:

codemodel [library file]

Load a XSPICE code model shared library file (e.g. analog.cm ...). Only available if ngspice
is compiled with the XSPICE option (--enable-xspice) or with the Windows executable
distributed since ngspice21. This command has to be called from spinit (see Chapt. 12.5) (or
.spiceinit for personal code models, 12.6).

13.5. COMMANDS 397

13.5.16 Compose: Compose a vector

General form 1 - List of values:
compose name values valuel [value2 ...]
General forms 2 - Linearly spaced values:

compose name start=val stop=val step=val
compose name center=val span=val step=val
compose name lin=val center=val span=val
compose name lin=val <start=val> <stop=val> <step=val>

General forms 3 - Logarithmically spaced values:

compose name (log=val | dec=val | oct=val) start=val stop=val
compose name (log=val | dec=val | oct=val) center=val span=val

General form 4 - Gaussian distributed values:
compose name gauss=val <mean=val> <sd=val>
General forms 5 - Uniformly distributed values:

compose name unif=val <mean=val> <span=val>
compose name unif=val start=val stop=val

General form 6 - XSPICE node history:
compose event-node-name xspice
General form 7 - Make vector(s) from device parameters:

compose parameter-name device

The general form 1 takes the values and creates a new vector, where the values may be arbitrary
expressions. If negative numbers or expressions starting with ’-” are to be entered, put them into
brackets, e.g. (-2.364) or (-5*PI).

The forms 2 - 5 create a new vector according the following possible parameters:

398 CHAPTER 13. INTERACTIVE INTERPRETER

start Value of name[0] (default: 0)
stop Last value of name
step Difference between successive elements of the linearly spaced vector (default: 1)
lin Number of points, linearly spaced
log Number of points, logarithmically spaced
dec Number of points per decade, logarithmically spaced
oct Number of points per octave, logarithmically spaced
center Where to center the range of points
span Size of the range of points (default for uniform distribution: 1)
gauss Number of points, Gaussian distributed
mean Mean value of the Gaussian (default O) or uniform distribution (default 0.5)
sd Standard deviation for the Gaussian distribution (default 1)
] unif \ \ Number of points, uniformly distributed

Form 6 creates a vector from the saved history of an XSPICE event node with similar results to
plotting or printing an event node.

13.5.17 Cutout: Cut out a section of all vectors in a tran plot

General Form:

let cut-tstart = timel
let cut-tstop = time2
cutout

Cut out part of each vector of the current tran plot, from times cut-tstart to cut-tstop and copy
these into a new tran plot. A new scale vector time’ will be generated as well. Vectors that are
shorter than the new scale vector will not be copied. If cut-start or cut-stop are not given,
the starting or end times of the current plot are used.

So the simple command cutout may be used to get rid of 0-length vectors in a new tran plot that
may occur if for example something like generating m1[id] is not served in an AC simulation.

13.5.18 Dc: Perform a DC-sweep analysis
General Form:

dc Source Vstart Vstop Vincr [Source2 Vstart2 Vstop2 Vincr2]

Do a dc transfer curve analysis. See the previous Chapt. 11.3.2 for more details. Several options
may be set (11.1.2).

13.5.19 Define: Define a function

General Form:

define function(argl, arg2, ...) expression

13.5. COMMANDS 399

Define the function with the name function and arguments argl, arg2, ... to be expression,
which may involve the arguments. When the function is later used, the arguments it is given
are substituted for the formal parameters when it was parsed. If expression is not present, any
existing definition for function is printed, and if there are no arguments then expressions for all
currently active definitions are printed. Note that you may have different functions defined with
the same name but different arities. Some useful definitions are

Example:

define max(x,y) (X >y) * X + (X <= y) %y
define min(x,y) (X <y) * X + (X >=vy) x vy
define limit(nom, avar) (nom + ((sgauss(0) >= @) ? avar : -avar))

When defining the function, the tokens used (here x, y, nom, or avar) should not have been
defined elsewhere, e.g. as vectors. Otherwise strange errors may result.
13.5.20 Deftype: Define a new type for a vector or plot

General Form:

deftype [v | p] typename abbrev

defines types for vectors and plots. abbrev will be used to parse things like abbrev(name) and to
label axes with M<abbrev>, instead of numbers. Also, the command ‘deftype p plottype pattern
... will assign plottype as the name for any plot with one of the patterns in its Name: field.

Example:

deftype v capacitance F
settype capacitance moscap
plot moscap vs v(cc)

13.5.21 Delete: Remove a trace or breakpoint

General Form:

delete [debug-number ...]

Delete the specified saved nodes and parameters, breakpoints and traces. The debug numbers
are those shown by the status command (unless you do status > file, in which case the debug
numbers are not printed).

13.5.22 Destroy: Delete an output data set

General Form:

destroy [plotnames | alll

400 CHAPTER 13. INTERACTIVE INTERPRETER

Release the memory holding the output data (the given plot or all plots) for the specified runs.
The initial plot, "const", can not be destroyed.

13.5.23 Devhelp: information on available devices

General Form:

devhelp [-csv] [-type] [-flags] [device_name [parameter]]

Devhelp command shows the user information about the devices available in the simulator. If
called without arguments, it simply displays the list of available devices in the simulator. The
name of the device is the name used inside the simulator to access that device. If the user
specifies a device name, then all the parameters of that device (model and instance parameters)
will be printed. Parameter description includes the internal ID of the parameter (id#), the name
used in the model card or on the instance line (Name), the direction (Dir) and the description
of the parameter (Description). All the fields are self-explanatory, except the ‘direction’. Di-
rection can be in, out or inout and corresponds to a ‘write-only’, ‘read-only’ or a ‘read/write’
parameter. Read-only parameters can be read but not set, write only can be set but not read and
read/write can be both set and read by the user.

The -type option prints the type of each parameter, for example real, integer, string.
Values ending with vec indicate vectors.

The -csv option prints the fields, separated by a commas, for direct import into a spreadsheet.
This option is used to generate the simulator documentation.

The -flags option prints the internal Spice flags for each parameter. A specific string is ap-
pended to the result for each flag:

X the parameter is not used in sensitivity analysis.

Q the parameter must be non-zero for sensitivity analysis of the subsequent parameter.

Z. the previous parameter must be non-zero for sensitivity analysis.

QO Like Q, but or-ed with the previous Q value.

A the parameter is significant for time-varying (non-DC) analyses.

P the parameter is a principal of the device. Used for naming output variables in sensitivity.
AA the parameter is significant for AC analyses only.

N the parameter is significant for noise analyses only.

U the parameter is not shown in the default show command output.

R redundant parameter name (e.g.vto vs.vt0).

13.5. COMMANDS 401

Example:

devhelp

devhelp resistor

devhelp capacitor ic
devhelp -flags -type bjt

13.5.24 Diff: Compare vectors

General Form:

diff plotl plot2 [vec ...]

Compare all the vectors in the specified plots, or only the named vectors if any are given. If
there are different vectors in the two plots, or any values in the vectors differ significantly,
the difference is reported. The variables diff_abstol, diff_reltol, and diff_vntol are used to
determine a significant difference.

13.5.25 Display: List known vectors and types
General Form:

display [varname ...]

Prints a summary of currently defined vectors, or of the names specified. The vectors are sorted
by name unless the variable nosort is set. The information given is the name of the vector, the
length, the type of the vector, and whether it is real or complex data. Additionally, one vector
is labeled [scale]. When a command such as plot is given without a VS argument, this scale is
used for the X-axis. It is always the first vector in a rawfile, or the first vector defined in a new
plot. If you undefine the scale (i.e, let TIME = []), one of the remaining vectors becomes the
new scale (which one is unpredictable). You may set the scale to another vector of the plot with
the command setscale (13.5.77).

13.5.26 Echo: Print text
General Form:

echo [-n] [text | $variable | $&vector]

Echos all text, variables and vectors to the screen or the redirected output location. If -n included
as the first argument, a newline will not be printed. Otherwise one will be appended to the
output.

402 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.27 Edit*: Edit the current circuit

General Form:

edit [file-name]

Print the current ngspice input file into a file, call up the editor on that file and allow the user to
modify it, and then read it back in, replacing the original file. If a file-name is given, then edit
that file and load it, making the circuit the current one. The editor may be defined in .Spiceinit
or spinit by a command line like

set editor=emacs

Using MS Windows, to allow the edit command calling an editor, you will have to add the
editor’s path to the PATH variable of the command prompt windows (see here). edit then calls
cmd.exe with e.g. notepad++ and file-name as parameter, if you have set

set editor=notepad++.exe

in .spiceinit or spinit.

13.5.28 Edisplay: Print a list of all the event nodes
General Form:

edisplay
Print the node names, node types, and number of events per node of all event driven nodes
generated or used by XSPICE °A’ devices. See eprint, eprvcd, and 23.2.2 for an example.
13.5.29 Eprint: Print an event driven node

General Form:

eprint node [node]
eprint node [node] > nodeout.txt $ output redirected

Print an event driven node generated or used by an XSPICE *A’ device. These nodes are vectors
not organized in plots. See edisplay, eprvcd, and Chapt. 23.2.2 for an example. Output
redirection into a file is available.

13.5.30 Eprved: Dump nodes in VCD format

General Form:

eprvcd [-t unit][-a] nodel node2 .. noden [> filename]

Dump the data of the specified event driven nodes and others to a .vcd file (see also 14.6.1.4).
Such files may be viewed with an vcd viewer, for example gtkwave. Values for analog nodes and

http://en.wikipedia.org/wiki/Environment_variable#Examples_of_DOS_environment_variables
http://gtkwave.sourceforge.net/

13.5. COMMANDS 403

expressions (as for plot) may be included, but expressions may not contain spaces. Option
“-t” sets the VCD file’s time unit; values are rounded to a negative power of 10. If not used
the unit is chosen to fit the simulation’s maximum timestep. Analog values are examined only
when a recorded XSPICE event value changes, unless option “-a” is used to dump them at each
timestep. Also see edisplay, eprint.

13.5.31 Esave: Save a set of event node outputs

General Form:

esave all | none | node ...

Save a set of event node outputs, discarding the rest (if keyword all is not given). May be used
to dramatically reduce memory (RAM) requirements when only a few useful nodes’ events are
saved.

For backward compatibility, if there are no esave commands given, all outputs are saved. If you
want to eprint (13.5.29) or eprvcd (13.5.30) a node, you have to save it explicitly, except for
all given or no save command at all.

Don’t save anything:

esave none

Useful if you do not need to examine the event data separately from the normal plot.

13.5.32 Fclose: close an open file handle

General Form:

fclose handle

This command closes an open file identified by the integer "handle’. It ignores values less than
3 and any file that was not opened by fopen or read by fread.

13.5.33 FFT: fast Fourier transform of vectors

General Form:

fft vectorl [vector2]

This analysis provides a fast Fourier transform of the input vector(s) in forward direction. fft
is much faster than spec (13.5.88) (about a factor of 50 to 100 for larger vectors).

The fft command will create a new plot consisting of the Fourier transforms of the vectors
given on the command line. Each vector given should be a transient analysis result, i.e. it
should have time as a scale. You will have gotten these vectors by the tran Tstep Tstop
Tstart command.

404 CHAPTER 13. INTERACTIVE INTERPRETER

The vector should have a linear equidistant time scale. Therefore linearization using the linearize
command is recommended before running fft. Be careful selecting a Tstep value small
enough for good interpolation, e.g. much smaller than any signal period to be resolved by
fft (see Linearize command). The Fast Fourier Transform will be computed using a optional
window function as given with the specwindow variable. A new plot named specN will be
generated with a new vector (having the same name as the input vector, see command above)
containing the transformed data.

Ngspice has two FFT implementations:

1. Standard code is based on the FFT function provided by John Green ‘FFTs for RISC 2.0°,
downloaded 2012, now to be found here. These are a power-of-two routines for fft and
ifft. If the input size doesn’t fit this requirement the remaining data will be zero padded
up to the next 2N field size. You have to take care of the correlated change in the scale
vector.

2. If available on the operating system (see Chapter 28) ngspice can be linked to the famous
FFTW-3 package, found here. This high performance package has advantages in speed
and accuracy compared to most of the freely available FFT libraries. It makes arbitrary
size transforms for even and odd data.

How to compute the fft from a transient simulation output:

ngspice 8 -> setplot tranl

ngspice 9 -> linearize V(2)

ngspice 9 -> set specwindow=blackman
ngspice 10 -> fft V(2)

ngspice 11 -> plot mag(V(2))

Linearize will create a new vector V(2) in a new plot tran2. The command fft V(2) will
create a new plot specl with vector V(2) holding the resulting data.

The variables listed in the following table control operation of the fft command. Each can be
set with the set command before calling fft.

specwindow: This variable is set to one of the following strings, which will determine the
type of windowing used for the Fourier transform in the spec and fft command. If not set, the
default is hanning.

All window functions have a rms value of 1. That means: No amplitude correction for the result
is needed after applying the functions to the time domain input signal.

none No windowing

rectangular Rectangular window

bartlet Bartlett (also triangle) window
hanning Hanning (also hann or cosine) window

blackman Blackman window

http://hyperarchive.lcs.mit.edu/HyperArchive/Archive/dev/src/ffts-for-risc-2-c.hqx
http://www.fftw.org/

13.5. COMMANDS 405

blackmanharris Blackman-Harris window
hamming Hamming window
gaussian Gaussian window

flattop Flat top window

hannl.i.ng
blacknan
4.5 hartlt_att
hanning
gaussian
flattop

I I I I 1 I I i i
a iz] 1888 1588 2088 25088 3Ben 35088 4888 4588

Figure 13.1: Spec and FFT window functions (Gaussian order = 4)

specwindoworder: This can be set to an integer in the range 2-8. This sets the order when
the Gaussian window is used in the spec and fft commands. If not set, order 2 is used.

13.5.34 Fopen: open a text file
General Form:

fopen handle file_name [mode]

The named file is opened and a numeric handle is returned in variable "handle’, or -1 on error.
This is a simple wrapper around the standard C-library function with the same name, so the
meaning of string 'mode’ is as defined by your OS documentation. By default the file is opened
for reading only. If interpreter variable "silent_fileio" is set, no message is printed on error.

13.5.35 Fourier: Perform a Fourier transform

General Form:

fourier fundamental_frequency [expression ...]

406 CHAPTER 13. INTERACTIVE INTERPRETER

Fourier is used to analyze the output vector(s) of a preceding transient analysis (see 13.5.98).
It does a Fourier analysis of each of the given values, using the first 10 multiples of the fun-
damental frequency (or the first nfreqs multiples, if that variable is set (see 13.7). The printed
output is like that of the . four ngspice line (Chapt. 11.6.4). The expressions may be any valid
expression (see 13.2), e.g. v(2). The evaluated expression values are interpolated onto a fixed-
space grid with the number of points given by the fourgridsize variable, or 200 if it is not set.
The interpolation is of degree polydegree if that variable is set, or 1 otherwise. If polydegree
is 0, then no interpolation is done. This is likely to give erroneous results if the time scale is not
monotonic.

The fourier command not only issues a printout, but also generates vectors, one per expression.
The size of the vector is 3 x nfreqs (per default 3 x 10). The name of the new vector is fouriermn,
where m is set by the mth call to the fourier command, n is the nth expression given in the actual
fourier command. fouriermn[0] is the vector of the 10 (nfreqs) frequency values, fouriermn[1]
contains the 10 (nfreqs) magnitude values, fouriermn[2] the 10 (nfreqs) phase values of the
result. Vector generation may be suppressed by setting the *fournosave’ variable.

Example:

* do the transient analysis

tran 1n 1m

* do the fourier analysis

fourier 3.34e6 v(2) v(3) $ first call
fourier 100e6 v(2) v(3) $ second call
* get individual values

let newtl = fourierll[0]1[1]
let newt2 = fourierll[1]1[1]
let newt3 = fourierll[2]1[1]
let newt4 = fourierl2[0][4]
let newt5 = fourierl2[1][4]
let newt6 = fourierl2[2][4]

* plot magnitude of second expression (v(3))
* from first call versus frequency
plot fourierl2[1l] vs fourierl2[0]

The plot command from the example plots the vector of the magnitude values, obtained by
the first call to fourier and evaluating the first expression in this call, against the vector of the
frequency values.

13.5.36 Fread: read into a variable from a text file

General Form:

fread result handle [length]

This command sets the string variable ’result’ by reading one line from the open file specified
by the integer "handle’. Terminating characters are stripped and the length returned in variable
’length’, if given. The handle will usually have been set by the fopen command, but any valid
file descriptor may be used.

13.5. COMMANDS 407

The length will be -1 if attempting to read at end-of-file or -2 on error. If interpreter variable
"silent_fileio" is set, no message is printed on error.

13.5.37 Getcwd: Print the current working directory
General Form:

getcwd

Print the current working directory.

13.5.38 Gnuplot: Graphics output via gnuplot

General Form:

gnuplot file plotargs

Like plot, but using gnuplot for graphics output and further data manipulation. ngspice creates
a file called file.plt containing the gnuplot command sequence, a file called file.data containing
the data to be plotted. On Linux, gnuplot may be called directly or via called via xterm, and
offers a Gnuplot console to manipulate the data. On Windows, a plot window is opened and the
command console window is available with a mouse click. Of course you have to have gnuplot
installed on your system. Please see chapter 14.7 for more details.

13.5.39 Hardcopy: Save a plot to a file for printing

General Form:

hardcopy file plotargs

Just like plot, except that it creates a file called file containing the plot. Various output formats
are available, depending on the variable hcopydevtype. It may be set to postscript or svg.
See also Chapt. 14.6 for more details (color etc.).

13.5.40 Help: Print summaries of Ngspice commands

Prints help. This help information, however, is spice3f5-like, stemming from 1991 and thus is
outdated. If commands are given, descriptions of those commands are printed. Otherwise help
for only a few major commands is printed. On Windows, this help command only provides a
link to documentation. Spice3f5 compatible help may be found in the Spice 3 User manual. For
ngspice, please use this manual.

https://web.archive.org/web/20180221111839/http://newton.ex.ac.uk/teaching/CDHW/Electronics2/userguide/

408 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.41 History: Review previous commands

General Form:

history [-r] [number]

Print out the history of the last (first if -r is specified) number commands typed at the keyboard.

A history substitution enables you to reuse a portion of a previous command as you type the
current command. History substitutions save typing. This feature is disabled by default, as it
may interfere with use of ’!” in expressions. To enable, set variable histsubst. A history
substitution normally starts with a "!’. A history substitution has three parts: an event that
specifies a previous command, a selector that selects one or more words of the event, and some
modifiers that modify the selected words. The selector and modifiers are optional. A history
substitution has the form ![event][:]selector[:modifier] ...] The event is required
unless it is followed by a selector that does not start with a digit. The ' : ' can be omitted before
the selector if this selector does not begin with a digit. History substitutions are interpreted
before anything else - - even before quotations and command substitutions. The only way to
quote the "!’ of a history substitution is to escape it with a preceding backslash. A need
not be escaped if it is followed by whitespace, '=", or " (.

I'I

Ngspice saves each command that you type in a history list, provided that the command contains
at least one word. The commands in the history list are called events. The events are numbered,
with the first command that you issue when you start Ngspice being number one. The history
variable specifies how many events are retained in the history list.

These are the forms of an event in a history substitution:

’ I H The preceding event. Typing ' !!’ is an easy way to reissue the previous command. ‘
| In | Event number n. |
I-n The n™ previous event. For example, ! -1 refers to the immediately preceding event and

is equivalent to !!.

| Istr | The unique previous event whose name starts with stz |

’

1?str[?] || The unique previous event containing the string str. The closing '?’ can be omitted if it

is followed by a newline.

You can modify the words of an event by attaching one or more modifiers. Each modifier must
be preceded by a colon. The following modifiers assume that the first selected word is a file
name:

13.5. COMMANDS 409

|

| Removes the trailing . str extension from the first selected word.

H Removes a trailing path name component from the first selected word.

: Removes all leading path name components from the first selected word.

Print the new command but do not execute it.

r
h
t

e Remove all but the trailing suffix.
p

s/

old/new || Substitute new for the first occurrence of old in the event line. Any delimiter may be
used in place of ‘/’. The delimiter may be quoted in old and new with a single backslash.
If ‘& appears in new, it is replaced by old. A single backslash will quote the ‘&’. The
final delimiter is optional if it is the last character on the input line.

Repeat the previous substitution.

g a Cause changes to be applied over the entire event line. Used in conjunction with ‘s’, as
in gs/old/newl, or with ‘&’.
G Apply the following ‘s’ modifier once to each word in the event.

For example, if the command Is /usr/elsa/toys.txt has just been executed, then the command
echo !":r 1A:h 1At HIAtir produces the output /usr/elsa/toys /usr/elsa toys.ixt toys . The '~
command is explained in the table below.

You can select a subset of the words of an event by attaching a selector to the event. A history
substitution without a selector includes all of the words of the event. These are the possible
selectors for selecting words of the event:

|0 | The command name

HEQ

The first argument

|

| |

| [1$ | The last argument |
’ n H The n™ argument (n > 1) ‘
’ ‘n1-n2 H Words n1 through n2 ‘
[T | Words 1 through $ |
ES | Words x through $ |
] X- H Words x through (§ - 1) ‘
’ [:]-x H Words 0 through x ‘
’ [:]% H The word matched by the last ?str? search used ‘

The colon preceding a selector can be omitted if the selector does not start with a digit.

The following additional special conventions provide abbreviations for commonly used forms
of history substitution:

* An event specification can be omitted from a history substitution if it is followed by a
selector that does not start with a digit. In this case the event is taken to be the event
used in the most recent history reference on the same line if there is one, or the preceding
event otherwise. For example, the command echo !?qucs?” !$ echoes the first and last
arguments of the most recent command containing the string qQUCS .

o If the first non-blank character of an input line is "', the '’ is taken as an abbreviation
for I:s" . This form provides a convenient way to correct a simple spelling error in the
previous line. For example, if by mistake you typed the command cat /etc/lasswd you
could re-execute the command with lasswd changed to passwd by typing *'p .

* You can enclose a history substitution in braces to prevent it from absorbing the following
characters. In this case the entire substitution except for the starting ’!" must be within

410 CHAPTER 13. INTERACTIVE INTERPRETER

the braces. For example, suppose that you previously issued the command cp accounts
../money . Then the command !cps looks for a previous command starting with cps
while the command !{cp}s turns into a command cp accounts ../moneys .

Some characters are handled specially as follows:

’ ~ H Expands to the home directory

| ? || Matches any single character in a filename

il

- || Used within [] to specify a range of characters. For example, [b-k] matches on any
character between and including ‘b’ through to ‘K’.

Matches any string of characters in a filename

Matches any of the characters enclosed in a filename

A |l If the ” is included within [] as the first character, then it negates the following characters
matching on anything but those. For example, [*agm] would match on anything other
than ‘a’, ‘g’ and ‘m’. [*a-zA-Z] would match on anything other than an alphabetic
character.

The wildcard characters *, ?, [, and] can be used, but only if you unset noglob first. This
makes them rather useless for typing algebraic expressions, so you should set noglob again
after you are done with wildcard expansion.

When the environment variable HOME exists (on Unix, Linux, or CYGWIN), history per-
manently stores previous command lines in the file $HOME/._ngspice_history. When this
variable does not exist (typically on Windows when the readline library is not officially in-
stalled), the history file is called . history and put in the current working directory.

The history command is part of the readline or editline package. The readline program pro-

vides a command line editor that is configurable through the file . inputrc. The path to this con-

figuration file is either found in the shell variable INPUTRGC, or it is (on Unix/Linux/CYGWIN)

the file ~/.inputrc in the user’s home directory. On Windows systems, the configuration file is
/Users/<usernames/.inputrc, unless the readline library was officially installed. In that case

the filename is taken from the Windows registry and points to a location that the user specified

during installation. See https://web.archive.org/web/20190527085247/https://tiswww.case.edu/php/che
for detailed documentation. Some useful commands are below.

’ Left/Right arrow \ Move one character to the left or right ‘

Home/End Move to beginning or end of line
Up/Down arrow Cycle through the history buffer
C-_- Undo last editing command

C-r Incremental search backward
TAB completion of a file name

C-ak Erase the command line (kill)
C-y Retrieve last kill (yank)

C-u Erase from cursor to start of line

13.5.42 Inventory: Print circuit inventory

General Form:

inventory

https://web.archive.org/web/20190527085247/https://tiswww.case.edu/php/chet/readline/rltop.html

13.5. COMMANDS 411

This commands accepts no argument and simply prints the number of instances of a particular
device in a loaded netlist.

13.5.43 Iplot*: Incremental plot

General Form:

iplot [-d delay] [-w width] [-o0] [node ...]

Incrementally plot the values of the nodes while ngspice runs. The iplot command can be
used with the where command to find trouble spots in a transient simulation. The “-d” options
sets the delay (in simulation steps) between the start of the simulation and the appearance of
the window. It can be used to suppress flicker when new values cause rapid resizing at the start
of the simulation. The “-w” option sets a fixed width for the window in simulation units (time,
frequency etc). When the output does not fit, only the latest output values are shown.

Node expressions are not supported, except that a fixed offset may be applied to event nodes
(usually digital) to separate traces vertically.

The “-0” option gives automatic separation, similar to the “digitop” keyword for “plot”. Explicit
and automatic offsets may be combined:

iplot -o controlx4 d_d+4.5 d_u

The @name[param] notation (27.1) does not work yet.

13.5.44 Jobs*: List active asynchronous ngspice runs

General Form:

jobs

Report on the asynchronous ngspice jobs currently running. Ngnutmeg checks to see if the
jobs are finished every time you execute a command. If it is done then the data is loaded and
becomes available.

13.5.45 Let: Assign a value to a vector

General Form:

let name = expr

Creates a new vector called name with the value specified by expr, an expression as described
above. If expr is [] (a zero-length vector) then the vector becomes undefined. Individual ele-
ments of a vector may be modified by appending a subscript to name (ex. name[0]). If there are
no arguments, let is the same as display.

412 CHAPTER 13. INTERACTIVE INTERPRETER

The command let creates a vector in the current plot. Use setplot (13.5.76) to create a new plot.

There is no straightforward way to initialize a new vector. In general, one might want to have
let initialize a slice (i.e. name[4:4,21:23] =[1 2 3]) of a multi-dimensional matrix of arbitrary
type (i.e. real, complex ..), where all values and indexes are arbitrary expressions. This will
fail. The procedure is to first allocate a real vector of the appropriate size with either vector(),
unitvec(), or [n1 n2 n3 ... 1. The second step is to optionally change the type of the
new vector (to complex) with the j() function. The third step reshapes the dimensions, and the
final step (re)initializes the contents, like so:

let a = j(vector(10))
reshape a [2][5]
let a[0][0] = (pi,pi)

Initialization of real vectors can be done quite efficiently with compose:

compose a values (pi, pi) (1,1) (2,sqrt(7)) (boltz,e)
reshape a [2][2]

See also unlet (13.5.102), compose (13.5.16).

13.5.46 Linearize: Interpolate to a linear scale

General Form:

linearize vec ...

Create a new plot with all of the vectors in the current plot, or only those mentioned as argu-
ments to the command, all data linearized onto an equidistant time scale.

How to compute the fft from a transient simulation output:

ngspice 8 -> setplot tranl

ngspice 9 -> linearize V(2)

ngspice 9 -> set specwindow=blackman
ngspice 10 -> fft V(2)

ngspice 11 -> plot mag(V(2))tstep

Linearize will redo the vectors vec or renew all vectors of the current plot (e.g. tran3) if no
arguments are given and store them into a new plot (e.g. tran4). The new vectors are interpolated
onto a linear time scale, which is determined by the values of tstep, tstart, and tstop in
the currently active transient analysis. The currently loaded input file must include a transient
analysis (a tran command may be run interactively before the last reset, alternately), and the
current plot must be from this transient analysis. The length of the new vectoris floor((tstop
- tstart) / tstep + 1.5). This command is needed for example if you want to do an FFT
analysis (13.5.33). Please note that the parameter tstep of your transient analysis (see Chapt.
11.3.10) has to be small enough to get adequate resolution, otherwise the command linearize

13.5. COMMANDS 413

will do sub-sampling of your signal. If no circuit is loaded and the data have been acquired
by the load (13.5.48) command, Linearize will take time data from transient analysis scale
vector.

The linearize command may be used to create a linearized cutout of the original vector by
defining the vectors lin-tstart, lin-tstop, and lin-tstep before issuing the linearize
command. At least lin-tstart or Lin-tstop has to be defined. This may be used to plot just
a portion of a vector, or to prepare a better fft by skipping the start-up phase of a ring oscillator.

Excerpt from the ring oscillator example soi/ring51_40.sp:

x original time scale by .tran command is from @ to 16ns
save out25 out50

run

plot out25 out50

let lin-tstart = 4n $ skip the start-up phase

let lin-tstop = 14n $ end earlier(just for demonstration)
let lin-tstep = 5p

linearize out25 out50

plot out25 out50

The linearize command should explicitly name the vectors of interest. Otherwise warning
messages pop up that the vectors lin-tstart etc cannot be linearized.

13.5.47 Listing: Print a listing of the current circuit

General Form:

listing [logical] [physical] [deck] [expand] [runnable] [param]

If the logical argument is given, the listing is with all continuation lines collapsed into one line,
and if the physical argument is given the lines are printed out as they were found in the file.
The default is logical. A deck listing is just like the physical listing, except without the line
numbers it recreates the input file verbatim (except that it does not preserve case). If the word
expand is present, the circuit is printed with all subcircuits expanded. Argument runnable will
list the circuit netlist expanded, but without additional line numbers, ready to be sourced again
and run in ngspice. The option param allows printing all parameters and their actual values.

Example:

source d:\myngspice\inputs\decade_counter.cir
listing r > $inputdir/decade_counter_runnable.cir

All options (except for param) may be invoked by just entering their first letter. The example
sources a ngspice netlist, the listing r command will save the expanded netlist (all param-
eters evaluated, subcircuits flattened, .control sections removed) into a file within the same
directory.

If you are using CIDER (26), listing r will not create a runnable netlist, because some data
lines which have been created internally are missing.

414 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.48 Load: Load rawfile data

General Form:

load [filename]

Loads either binary or ascii format rawfile data from the files named. The default file name is
rawspice.raw, or the argument to the -r flag if there was one.

13.5.49 Mc_source: Reload the circuit netlist from an internal storage

General Form:

mc_source

Upon reading a netlist, after its preprocessing is finished, the modified netlist is stored internally.
This command will reload this netlist and create a new circuit inside ngspice. This command is
used in conjunction with the alterparam command.

13.5.50 Meas: Measurements on simulation data

General Form (example):

MEAS {DC|AC|TRAN|SP} result TRIG trig_variable VAL=val <TD=td>
<CROSS=# | CROSS=LAST> <RISE=#|RISE=LAST> <FALL=#|FALL=LAST>
<TRIG AT=time> TARG targ_variable VAL=val <TD=td>

<CROSS=# | CROSS=LAST> <RISE=#|RISE=LAST>

<FALL=#| FALL=LAST> <TRIG AT=time>

Most of the input forms found in 11.4 may be used here with the command meas instead of
.meas (ure). Using meas inside the .controlendc section offers additional features
compared to the .meas use. meas will print the results as usual, but in addition will store
its measurement result (typically the token result given in the command line) in a vector.
This vector may be used in following command lines of the script as an input value of another
command. For details of the command see Chapt. 11.4. The measurement type SP is only
available here, because a fft command will prepare the data for SP measurement. Option
autostop (11.1.4) is not available.

Unfortunately par(’expression’) (11.4.10, 11.6.6) and param (11.4.9) will not work here, i.e.
inside the . control section. You may use an expression by the let command (13.5.45) instead,
giving let vec_new = expression.

Replacement for par (‘expression’) in meas inside the .control section

let vdiff = v(nl)-v(no)

meas tran vtest find vdiff at=0.04e-3

xthe following will not do here:

*meas tran vtest find par('v(nl)-v(n0)’') at=0.04e-3

13.5. COMMANDS 415

13.5.51 Mdump: Dump the matrix values to a file (or to console)

General Form:

mdump <filename>

If <filename> is given, the output will be stored in file <filename>, otherwise dumped to your
console.

13.5.52 Mrdump: Dump the matrix right hand side values to a file (or to
console)

General Form:

mrdump <filename>

If <filename> is given, the output will be appended to file <filename>, otherwise dumped to
your console.

Example usage after ngspice has started:

* Dump matrix and RHS values after 10 and 20 steps
* of a transient simulation
source rc.cir

step 10

mdump ml.txt

mrdump mrl.txt

step 10

mdump m2.txt

mrdump mr2.txt

* just to continue to the end
step 10000

You may create a loop using the control structures (Chapt. 13.6).

13.5.53 Noise: Noise analysis

See the .NOISE analysis (11.3.4) for details.

The noise command will generate two plots (typically named noisel and noise2) with Noise
Spectral Density Curves and Integrated Noise data. To write these data into output file(s), you
may use the following command sequence:

416 CHAPTER 13. INTERACTIVE INTERPRETER

Command sequence for writing noise data to file(s):

.control

tran le-6 le-3

write test_tran.raw

noise V(out) vinp dec 333 1 1le8 16
print inoise_total onoise_total

xfirst option to get all of the output (two files)
setplot noisel

write test_noisel.raw all

setplot noise2

write test_noise2.raw all

* second option (all in one raw-file)
write testall.raw noisel.all noise2.all
.endc

13.5.54 Op: Perform an operating point analysis

General Form:
op

Do an operating point analysis. See Chapt. 11.3.5 for more details.

13.5.55 Option: Set a ngspice option

General Form:
option [option=val] [option=val]

Set any of the simulator variables as listed in Chapt. 11.1. See this chapter also for more
information on the available options. The option command without any argument lists the
current options set in the simulator. It shows the current options, while new values are set to be
used in the next analysis run. That means that changed options will not be visible immediately.
Multiple options may be set in a single line.

The following example demonstrates a control section, which may be added to your circuit file
to test the influence of variable trtol on the number of iterations and on the simulation time.

13.5. COMMANDS 417

Command sequence for testing option trtol:

.control
set noinit

option trtol=1

echo

echo trtol=1

run

rusage traniter trantime
reset

option trtol=3

echo

echo trtol=3

run

rusage traniter trantime
reset

option trtol=5

echo

echo trtol=5

run

rusage traniter trantime
reset

option trtol=7

echo

echo trtol=7

run

rusage traniter trantime
plot tranl.v(out25) tranl.v(out50) v(out25) v(out50)
.endc

13.5.56 Plot*: Plot vectors on the display

General Form:

plot exprl [vs scale_exprl] [expr2 [vs scale_expr2]]
[ylimit ylo yhi] [xlimit xlo xhi] [xindices xilo xihi]
[xcompress comp] [xdelta xdel] [ydelta ydel]

[xlog] [ylog] [loglog] [nogrid]

[linplot] [combplot] [pointplot] [nointerp] [retraceplot]
[polar] [smith] [smithgrid]

[xlabel word] [ylabel word] [title word]

[samep] [linear] [kicad] [plainplot] [digitop]

[all] [allv] [alli] [ally] [allel]

Plot the given vectors or exprs on the screen (if you are on a graphics terminal). The xlimit
and ylimit arguments determine the high and low x- and y-limits of the axes, respectively. The

418 CHAPTER 13. INTERACTIVE INTERPRETER

xindices arguments determine what range of points are to be plotted - everything between the
xilo’th point and the xihi’th point is plotted. The xcompress argument specifies that only
one out of every comp points should be plotted. If an xdelta or a ydelta parameter is present,
it specifies the spacing between grid lines on the X- and Y-axis. These parameter names may
be abbreviated to x1, y1, xind, xcomp, xdel, and ydel respectively.

The scal_expr argument(s) are expressions to use as the scale on the x-axis instead of the de-
fault scale for the plot. If xlog or ylog are present, then the X or Y scale, respectively, are
logarithmic (loglog is the same as specifying both). The xlabel and ylabel arguments cause
the specified labels to be used for the X and Y axes, respectively.

If samep is given, the values of the other parameters from the previous plot, hardcopy, or
asciiplot command are used even if they are redefined on the command line.

The title argument is used in the headline of the plot window and replaces the default text,
which is ‘actual plot: first line of input file’.

The linear keyword is used to override a default logscale plot (as in the output for an AC
analysis).

The keywords linplot, combplot and pointplot select different plot styles. The keyword
nointerp turns off interpolation of the vector data, nogrid suppresses the drawing of grid-
lines. retraceplot may be required if the scale vector (the x axis) has values which do not
grow monothonically (e.g. plotting a circle or the hyseresis loop of a memristor). Without this
keyword retracing values (x values moving forth and back) are suppressed.

Finally, the keyword polar generates a polar plot. To produce a Smith plot, use the keyword
smith. Note that the data is transformed, so for Smith plots you will see the data a + jb trans-
formed to

a=(a®+b*—1)/((a+1)*+b?) (13.1)

b= (2xb)/((a+1)*+b?) (13.2)

To produce a polar plot with a Smith grid but without performing the Smith transform, use the
keyword smithgrid.

Keyword retraceplot may be useful if the x-axis values are non-monotonic. Whereas time
is always growing monotonically, during plotting ynew vs xnew xnew may partially increase,
then decrease again. If this occurs, plotting is suppressed as per default. retraceplot will
enable plotting all data.

If you specify plot all, all vectors (including the scale vector) are plotted versus the scale
vector (see commands display (13.5.25) or setscale (13.5.77) on viewing the vectors of the
current plot). The command plot ally will not plot the scale vector, but all other ’real’ y
values. The command plot alli selects all current vectors, the command plot allv all
voltage vectors.

If the vector name to be plotted contains - , / or other tokens that may be taken for operators of
an expression, and plotting fails, try enclosing the name in double quotes, e.g. plot “/vout”.

Plotting of complex vectors, as may occur after an ac simulation, requires special considera-
tions. Please see Chapt. 13.5.1 for details.

13.5. COMMANDS 419

Keyword kicad will enable plotting vectors with leading character / (see 12.14.8) by placing
double quotes around the token, keyword plainplot will allow this by suppressing the eval-
uation of any expression containing such characters. vcl vs vc2 is not supported with using
plainplot. The same effect may be generated by setting the variable plainplot.

digitop will assemble all digital (event) nodes into a single graph, arranged on top of each
other.

Plot all analog nodes [all], all voltage nodes only [allv], all current nodes, [alli], all nodes
except for the scale [ally], all event nodes [alle].

13.5.57 Pre_<command>: execute commands prior to parsing the circuit

General Form:

pre_<command>

All commands in a .controlendc section are executed affer the circuit has been parsed.
If you need command execution before circuit parsing, you may add these commands to the
general spinit or local .spiceinit files. Another possibility is adding a leading pre_ to a com-
mand within the .control section of an ordinary input file, which forces the command to be
executed before circuit parsing. Basically <command> may be any command listed in Chapt.
13.5, however only a few commands are indeed useful here. Some examples are given below:

Examples:

pre_unset ngdebug
pre_set strict_errorhandling
pre_codemodel mymod.cm

pre_<command> is available only in the .control mode (see 12.4.3), not in interactive mode,
where the user may determine when a circuit is to be parsed, using the source command
(13.5.86) .

13.5.58 Pre_OSDI: load a *.0sdi compact device model shared library

Compact device models, written in Verilog-A HDL and compiled with OpenVAF (see9.2) are
loaded dynamically at runtime. Several models may be loaded for a single simulation run.
Please add these commands at the beginning of the .control section.

Examples:
pre_osdi osdi_libs/bsimbulk107.o0sdi osdi_libs/pspl03.osdi
13.5.59 Print: Print values

General Form:

print [col] [line] expr ...

420 CHAPTER 13. INTERACTIVE INTERPRETER

Prints the vector(s) described by the expression expr. If the col argument is present, print
the vectors named side by side. If line is given, the vectors are printed horizontally. col
is the default, unless all the vectors named have a length of one, in which case line is the
default. The options width (default 80) and height (default 24) are effective for this command
(see asciiplot 13.5.6). The 'more’ mode is the standard mode if printing to the screen, that
is after a number of lines given by height, and after a page break printing stops with request
for answering the prompt by <return> (print next page), '¢’ (print rest) or q’ (quit printing).
If everything shall be printed with stopping after each page (only useful in interactive mode,
because need manual continuation), use the command set moremode before printing or put
it into .spiceinit 12.6 (or spinit 12.5). If the expression is all, all of the vectors available
are printed. Thus print col all > filename prints everything into the file filename in
SPICE2 format. The scale vector (time, frequency) is always in the first column unless the
variable noprintscale is true. You may use the vectors alli, allv, ally with the print
command, but then the scale vector will not be printed.

Examples:

print all
set width=300
print v(1l) > outfile.out

13.5.60 Psd: power spectral density of vectors

General Form:

psd ave vectorl [vector2]

Calculate the single sided power spectral density of signals (vectors) resulting from a transient
analysis. Windowing is available as described in the fft command (13.5.33). The FFT data are
squared, summarized, weighted and printed as total noise power up to Nyquist frequency, and
as noise voltage or current.

ave is the number of points used for averaging and smoothing in a postprocess, useful for noisy
data. A new plot vector is created that holds the averaged results of the FFT, weighted by the
frequency bin. The result can be plotted and has the units VA2/Hz or A*2/Hz, depending on the
the input vector.

13.5.61 Quit: Leave Ngspice

General Form:

quit

quit [exitcode]
Quit ngspice. Ngspice will ask for an acknowledgment if parameters have not been saved. If
unset askquit is specified, ngspice will terminate immediately.

The optional parameter exitcode is an integer that sets the exit code for ngspice. This is useful
to return a success/fail value to the operating system.

13.5. COMMANDS 421

13.5.62 Rehash: Reset internal hash tables
General Form:

rehash
Recalculate the internal hash tables used when looking up UNIX commands, and make all

UNIX commands in the user’s PATH available for command completion. This is useless unless
you have set unixcom first (see above).

13.5.63 Remcirc: Remove the current circuit
General Form:

remcirc
This command removes the current circuit from the list of circuits sourced into ngspice. To se-

lect a specific circuit, use setcirc (13.5.75). To load another circuit, refer to source (13.5.86).
The new active circuit will be the circuit on top of the list of the remaining circuits.

13.5.64 Remzerovec: Remove zero length vectors
General Form:

remzerovec

This command removes vectors of length zero from the current plot.

13.5.65 Reset: Reset an analysis
General Form:

reset

Throw out any intermediate data in the circuit (e.g, after a breakpoint or after one or more
analyses have been done), and re-parse the input file. The circuit can then be re-run from it’s
initial state, overriding the effect of any set or alter commands. These two need to be repeated
after the reset command.

Reset may be required in simulation loops preceding any run (or tran ...) command.

Reset is required after an alterparam command (13.5.5) for making the parameter change
effective.

422 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.66 Reshape: Alter the dimensionality or dimensions of a vector

General Form:

reshape vector vector ...

or
reshape vector vector ... [dimension, dimension, ...]
or

reshape vector vector ... [dimension][dimension]

This command changes the dimensions of a vector or a set of vectors. The final dimension
may be left off and it will be filled in automatically. If no dimensions are specified, then the
dimensions of the first vector are copied to the other vectors. An error message of the form
’dimensions of x were inconsistent’ can be ignored.

Example:

* generate vector with all (here 30) elements
let newvec=vector(30)

* reshape vector to format 3 x 10

reshape newvec [3][10]

x access elements of the reshaped vector
print newvec[0][9]

print newvec[1][5]

let newt = newvec[2][4]

Command reshape expects positive interger numbers to define the dimensions. Vectors (13.8.2)
or variables (13.8.1) are suitable, when transformed into numbers.

Example (using vectors and variables):

let ntasks=12 ; vector

set nparams=3 ; variable

let p=vector(36) ; new vector

reshape p[$&ntasks][$nparams] ; create format 12 x 3

13.5.67 Resume: Continue a simulation after a stop

General Form:
resume

Resume a simulation after a stop or interruption (control-C).

13.5. COMMANDS 423

13.5.68 Rspice*: Remote ngspice submission

General Form:

rspice <input file>

Runs a ngspice remotely taking the input file as a ngspice input file, or the current circuit if no
argument is given. Ngspice waits for the job to complete, and passes output from the remote
job to the user’s standard output. When the job is finished the data is loaded in as with aspice.
If the variable rhost is set, ngnutmeg connects to this host instead of the default remote ngspice
server machine. This command uses the rsh command and thereby requires authentication via
a .rhosts file or other equivalent method. Note that rsh refers to the ‘remote shell” program,
which may be remsh on your system; to override the default name of rsh, set the variable
remote_shell. If the variable rprogram is set, then rspice uses this as the pathname to the
program to run on the remote system.

Note: rspice will not acknowledge elements that have been changed via the alter or altermod
commands.

13.5.69 Run: Run analysis from the input file

General Form:

run [rawfile]

Run the simulation as specified in the input file. If there were any of the control lines . ac, . op,
.tran, or .dc, they are executed. The output is put in rawfile if it was given, in addition to
being available interactively.

13.5.70 Rusage: Resource usage

General Form:

rusage [resource ...]

Print resource usage statistics. If any resources are given, just print the usage of that resource.
Most resources require that a circuit be loaded. Currently valid resources are

time Total Analysis Time

cputime The amount of time elapsed since the last rusage cputime call.
totalcputime Total elapsed time used so far.

decklineno Number of lines in deck

netloadtime Nelist loading time

netparsetime Netlist parsing time

424 CHAPTER 13. INTERACTIVE INTERPRETER

faults Number of page faults and context switches (BSD only).
space Data space used (output is depending on the operating system).
temp Operating temperature.

tnom Temperature at which device parameters were measured.
equations Number of circuit equations

totiter Total iterations

accept Accepted time-points

rejected Rejected time-points

loadtime Time spent loading the circuit matrix and RHS.
reordertime Matrix reordering time

lutime L-U decomposition time

solvetime Matrix solve time

trantime Transient analysis time

tranpoints Transient time-points

traniter Transient iterations

trancuriters Transient iterations for the last time point
tranlutime Transient L-U decomposition time

transolvetime Transient matrix solve time

everything All of the above.

all All of the above.

If rusage is given without any parameter, a sequence of outputs is printed using the following
rusage parameters: time, totalcputime, space.

13.5.71 Save: Save a set of outputs

General Form:

save [all | outvec ...]

Save a set of outputs, discarding the rest (if keyword all is not given). May be used to dramati-
cally reduce memory (RAM) requirements if only a few useful node voltages or branch currents
are saved.

13.5. COMMANDS 425

Node voltages may be saved by giving the nodename or v(nodename). Currents through an
independent voltage source are given by i(sourcename) or sourcename#branch. Internal de-
vice data (27.1) are accepted as @dev[param]. The syntax is identical to the .save command
(11.6.1).

Note: In the .controlendc section save must occur before the run or tran com-
mand to become effective.

If a node has been mentioned in a save command, it appears in the working plot after a run
has completed, or in the rawfile written by the write (13.5.107) command. For backward com-
patibility, if there are no save commands given, all outputs are saved. If you want to trace
(13.5.97) or plot (13.5.56) a node, you have to save it explicitly, except for all given or no save
command at all.

When the keyword all appears in the save command, all node voltages, voltage source currents
and inductor currents are saved in addition to any other vectors listed.

Save voltage and current:

save vd_node vs#branch v(vs_node) i(vs2)

Save allows storing and later access of internal device parameters. e.g. in a command like

Save internal parameters:

save all @mnl[gm]

saves all standard analysis output data plus gm of transistor mnl to internal memory (see also
27.1).

save may store data from nodes or devices residing inside of a subcircuit:

Save voltage on node 3 (top level), node 8 (from inside subcircuit x2) and current through vmeas
(from subcircuit x1):

save 3 x1.x2.x1.x2.8 v.x1l.x1l.x1l.vmeas#branch

Save internal parameters within subcircuit:

save @m.xmos3.mnl[gm]

Use commands listing expand (13.5.47, before the simulation) or display (13.5.25, after
simulation) to obtain a list of all nodes and currents available. Please see Chapt. 27 for an
explanation of the syntax for internal parameters.

Entering several save lines in a single .control section will accumulate the nodes and param-
eters to be saved. If you want to exclude a node, you have to get its number by calling status
(13.5.89) and then calling delete number (13.5.21).

Don’t save anything:

Save none

426 CHAPTER 13. INTERACTIVE INTERPRETER

Useful if shared ngspice library is used and data are immediately transferred to the caller via
the shared ngspice interface.

Don’t save subcircuit internal nodes:

save nosub

Don’t save node vectors that are defined inside of a subcircuit. This may for example save a lot
of memory if you are not interested in the internals of a subcircuit device model.

Don’t save internal device nodes:

save nointernals

Don’t save internal device nodes issued by OpenVAF/OSDI Verilog-A models like PSP..

13.5.72 Sens: Run a sensitivity analysis

General Form:

sens output_variable [filter ...]
sens out_var [filter ...] ac (DEC|OCT|LIN) N Fstart Fstop

Perform a Sensitivity analysis: output_variable is either a node voltage (ex. v(1) or
v(A,out)) or a current through a voltage source (e.g. i(vtest)). The first form calculates
DC sensitivities, the second form AC sensitivities. The output values are in dimensions of
change in output per unit change of input (as opposed to percent change in output or per percent
change of input). See 11.3.7 for further details.

13.5.73 Set: Set the value of a variable

General Form:

set [word]
set [word = value]
set [word = (list of values)]

Set the value of word to value, if it is present. You can set any word to be any value: numeric,
string or list. If no value is given then the value is the Boolean ‘true’. If you enter a string,
you have to enclose it in double quotes. Set saves the lower case version of a word string but
the setcs variant of the command preserves case. If a variable is set to a list of values that are
enclosed in parentheses (which must be separated from their values by white space), the value
of the variable is the list.

The value of word may be inserted into a command by writing $word, or $word[index]for an
individual list element. The index may itself be a substitution: $word[$index].

The variables used by ngspice are listed in section 13.7.

13.5. COMMANDS 427

If a variable has the same name as a simulator option, setting it will also attempt to set the
option.

Set entered without any parameter will list all variables set, and their values, if applicable.

Be advised that set sets the lower case variant of word. An exceptions to this rule is the variable
sourcepath.

Set automatically tries to distinguish between values given as numbers, strings or lists. If a
string starts with a numerical value, like 2N5401_C and is not enclosed in double quotes, it is
interpreted as a real number 2n, i.e. 2e-9. The rest of the string is discarded.

A variable may be set to a value read from a file by I/O redirection.

Example:

set invar < infile.txt
echo $invar

echo $invar([2]

echo $invar[5]

With the input text file

infile.txt:

* testing set input from file
3

NeXt

4

5 and 7

you will get the output from echo
3 NeXt 4 5 and 7

NeXt
and

Lines starting with **’ are comment lines and will be ignored. Lines with multiple tokens are
stored as list vectors, lines with a single token as string.

Another option to set a variable from outside is the I/O redirection by backquotes or backticks
(see 13.10), if you run ngspice as a console application.

13.5.74 Setcs: Set the value of a variable, case preserved

General Form:

setcs [word]
setcs [word = value]

428 CHAPTER 13. INTERACTIVE INTERPRETER

Set the value of word to value, if it is present. You can set any word to be any value, numeric or
string. If no value is given then the value is the Boolean ‘true’. If you enter a string, you have
to enclose it in double quotes. Setcs keeps the case of a word string.

The value of word may be inserted into a command by writing $word. If a variable is set to
a list of values that are enclosed in parentheses (which must be separated from their values by
white space), the value of the variable is the list.

The variables used by ngspice are listed in section 13.7.
Setcs entered without any parameter will list all variables set, and their values, if applicable.

Setcs automatically tries to distinguish between values given as numbers, strings or lists. If a
string starts with a numerical value, like 2N5401_C and is not enclosed in double quotes, it is
interpreted as a real number 2n, i.e. 2e-9. The rest of the string is discarded.

13.5.75 Setcirc: Change the current circuit

General Form:

setcirc [circuit number]

The current circuit is the one that is used for the simulation commands below. When a circuit
is loaded with the source command (see below, 13.5.86) it becomes the current circuit.

Setcirc followed by 'return’ without any parameters lists all circuits loaded.

13.5.76 Setplot: Switch the current set of vectors

General Form:

setplot

setplot [plotname]
setplot previous
setplot next
setplot new

Set the current plot to the plot with the given name, or if no name is given, prompt the user
with a list of all plots generated so far. (Note that the plots are named as they are loaded, with
names like tranl or op2. These names are shown by the setplot and display commands and
are used by diff, below.) If the ‘New’ item is selected, a new plot is generated that has no
vectors defined.

Note that here the word plot refers to a group of vectors that are the result of one ngspice run.
When more than one file is loaded in, or more than one plot is present in one file, ngspice keeps
them separate and only shows you the vectors in the current plot with the display (13.5.25)
command. setplot previous will show the previous plot in the plot list, if available, setplot
next the next plot. If not available, a warning is issued and the current plot stays active. Setplot
will also allow selecting the digital event nodes that have been created during the simulation
that made the analog plot.

13.5. COMMANDS 429

13.5.77 Setscale: Set the scale vector for the current plot
General Form:

setscale [vectorl] [vector2]
The scale vector provides the values for the x-axis in a 2D plot. If no argument is given, the
current scale vector is printed. With one argument, defines the default scale vector for the

current plot. With two arguments, sets the specific scale vector of vectorl to be vector2. If
vector2 is “none” the scale vector for vector] reverts to the plot’s default.

13.5.78 Setseed: Set the seed value for the random number generator
General Form:

setseed [number]
When this command is given, the seed value for the random number generator is set to number.
Number has to be an integer greater than 0. The random numbers retrieved after this command
are a sequence of pseudo random numbers with a huge period. Setting the seed value will
provide a reproducible sequence of random numbers, i.e. the same seed results in the same se-

quence. See also the options SEED and SEEDINFO in chapt. 11.1.1and chapt. 18 on statistical
circuit analysis..

13.5.79 Settype: Set the type of a vector
General Form:

settype type vector ...

Change the type of the named vectors to type. Type names can be found in the following table.

Type | Unit | | Type Unit |
notype - pole -
time S Zero -
frequency Hz s-param -
voltage A% temp-sweep | Celsius

current A res-sweep Ohms
voltage-density | V/v/Hz impedance | Ohms
current-density | A/\/Hz admittance S

voltage”2-density | V¥Hz power W
current2-density | A%Hz phase Degree
temperature Celsius decibel dB

charge C capacitance F

430 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.80 Shell: Call the command interpreter

General Form:

shell [command]

Call the operating system’s command interpreter; execute the specified command or call for
interactive use. The status returned by the command is stored in variable shellstatus.

13.5.81 Shift: Alter a list variable

General Form:

shift [varname] [number]

If varname is the name of a list variable, it is shifted to the left by number elements (i.e, the
number leftmost elements are removed). The default varname is argv, and the default number
is 1.

13.5.82 Show: List device state

General Form:

show devices [: parameters] ,

The show command prints out tables summarizing the operating condition of selected devices.
If devices is missing, a default set of devices are listed, if devices is a single letter, devices
of that type are listed. A device’s full name may be specified to list only that device. Finally,
devices may be selected by model by using the form #modelname.

Because the output format is tabular, long strings, including device names, may be truncated.
The command “set altshow” selects an alternative output format without truncations.

If no parameters are specified, the values for a standard set of parameters are listed. If the list of
parameters contains a ‘+’, the default set of parameters is listed along with any other specified
parameters.

For both devices and parameters, the word all has the obvious meaning.

Note: there must be spaces around the ‘:’ that divides the device list from the parameter list.

13.5.83 Showmod: List model parameter values

General Form:

showmod models [: parameters] ,

13.5. COMMANDS 431

The showmod command operates like the show command (above) but prints out model parameter
values. The applicable forms for models are a single letter specifying the device type letter (e.g.
m, or C), a device name (e.g. m.xbuf22.m4b), or #modelname (e.g. #p1).

Typical usage (e.g. for BSIM4 model):

showmod #cmosn #cmosp : lkvthO vtho

Note: there must be spaces around the ‘:’ that divides the device list from the parameter list.

Obtain the default model parameters (e.g. for a BJT device):

netlist for default bipolar transistor
Q1 cc bb ee defbip

.model defbip npn

.control

op

showmod ql

.endc

op is required to set the data (otherwise all reported values are 0). The combination of the default
parameters and the parameters given in the .model line (This is what the simulator finally uses.)
are obtainable by showmod only after a simulation command (e.g. op).

13.5.84 Snload: Load the snapshot file

General Form:

snload circuit-file file

snload reads the snapshot file generated by snsave (13.5.85). circuit-file is the original circuit
input file. After reading, the simulation may be continued by resume (13.5.67).

An input script for loading circuit and intermediate data, resuming simulation and plotting is
shown below:

432 CHAPTER 13. INTERACTIVE INTERPRETER

Typical usage:
* SCRIPT: ADDER - 4 BIT BINARY
* script to reload circuit and continue the simulation
* begin with editing the file location
* to be started with ’'ngspice adder_snload.script’

.control

* cd to where all files are located

cd D:\Spice_general\ngspice\examples\snapshot
* load circuit and snpashot file

snload adder_mos_circ.cir adder500.snap

* continue simulation

resume

* plot some node voltages

plot v(10) v(11) v(12)

.endc

Due to a bug we currently need the term ’script’ in the title line (first line) of the script.

13.5.85 Snsave: Save a snapshot file

General Form:

snsave file

If you run a transient simulation and interrupt it by e.g. a stop breakpoint (13.5.91), you may
resume simulation immediately (13.5.67) or store the intermediate status in a snapshot file by
snsave for resuming simulation later (using snload (13.5.84)), even with a new instance of
ngspice.

13.5. COMMANDS 433

Typical usage:

Example input file for snsave

* load a circuit (including transistor models and .tran command)
starts transient simulation until stop point

store intermediate data to file

begin with editing the file location

to be run with ’'ngspice adder_mos.cir’

* X X ¥

.include adder_mos_circ.cir

.control

xcd to where all files are located

cd D:\Spice_general\ngspice\examples\snapshot
unset askquit

set noinit

xinterrupt condition for the simulation
stop when time > 500n

* simulate

run

* store snapshot to file

snsave adder500.snap

quit

.endc

.END

adder_mos_circ.cir is a circuit input file, including the netlist, .model and .tran statements.

Unfortunately snsave/snload will not work if you have XSPICE devices (or V/I sources with
polynomial statements) in your input deck.

13.5.86 Source: Read a ngspice input file

General Form:

source infile

For ngspice: read the ngspice input file infile, containing a circuit netlist. Ngspice control
commands may be included in the file, and must be enclosed between the lines .control and
.endc. These commands are executed immediately after the circuit is loaded, so a control
line of ac ... works the same as the corresponding .ac card. The first line in any input file
is considered a title line and not parsed but kept as the name of the circuit. Thus, a ngspice
command script in infile must begin with a blank line and then with a .control line. Also,
any line starting with the string ‘*#’ is considered as a control line (.control and .endc is
placed around this line automatically.). The exception to these rules are the files spinit (12.5)
and .spiceinit (12.6).

434 CHAPTER 13. INTERACTIVE INTERPRETER

For ngutmeg: reads commands from the file infile. Lines beginning with the character ‘*’ are
considered comments and are ignored.

The following search path is executed to find infile: current directory (OS dependent), <pre-
fix>/share/ngspice/scripts, env. variable NGSPICE_INPUT_DIR (if defined), see 12.7. This
sequence may be overridden by setting the internal sourcepath variable (see 13.7) before call-
ing source infile.

13.5.87 Sp: S-Parameter Analysis

General form:

sp dec nd fstart fstop <donoise>
sp oct no fstart fstop <donoise>
sp lin np fstart fstop <donoise>

Examples:

sp dec 10 1 10K
sp dec 10 1K 100MEG 1
sp lin 100 1 100HZ

For details please see chapter 11.3.8. the ports required are available as an option to the inde-
pendent voltage source VSRC (see4.1.11).

13.5.88 Spec: Create a frequency domain plot

General Form:

spec start_freq stop_freq step_freq vector [vector ...]

Calculates a new complex vector containing the Fourier transform of the input vector (typi-
cally the linearized result of a transient analysis). The default behavior is to use a Hanning
window, but this can be changed by setting the variables specwindow and specwindoworder
appropriately.

Typical usage:

ngspice 13 -> linearize

ngspice 14 -> set specwindow = "blackman"
ngspice 15 -> spec 10 1000000 1000 v(out)
ngspice 16 -> plot mag(v(out))

Possible values for specwindow are none, hanning, cosine, rectangular, hamming, triangle,
bartlet, blackman and gaussian. In the case of a Gaussian window specwindoworder is
a number specifying its order. For a list of window functions see 13.5.33.

13.5. COMMANDS 435

13.5.89 Status: Display breakpoint information

General Form:

status

Display all of the saved nodes and parameters, traces and breakpoints currently in effect.

13.5.90 Step: Run a fixed number of time-points
General Form:

step [number]

Iterate number times, or once, and then stop.

13.5.91 Stop: Set a breakpoint

General Form:

stop [after n] [when value cond value]

Set a breakpoint. The argument after n means stop after iteration number ‘n’, and the argument
when value cond value means stop when the first value is in the given relation with the
second value, the possible relations being

’ Symbol \ Alias H Meaning ‘
= eq equal to
<> ne not equal
> gt greater than
< 1t less than
>= ge greater than or equal to
<= le less than or equal to

Symbol or alias may be used alternatively. All stop commands have to be given in the control
flow before the run command. The values above may be node names in the running circuit, or
real values. If more than one condition is given, e.g.

stop after 4 when v(1) > 4 when v(2) < 2,

the conjunction of the conditions is implied. If the condition is met, the simulation and control
flow are interrupted, and ngspice waits for user input.

In a transient simulation the ‘=" or eq will only work with vector time in commands like
stop when time = 200n.

Internally, a breakpoint will be set at the time requested. Multiple breakpoints may be set. If the
first stop condition is met, the simulation is interrupted, the commands following run or tran
(e.g. alter or altermod) are executed, then the simulation may continue at the first resume

436 CHAPTER 13. INTERACTIVE INTERPRETER

command. The next breakpoint requires another resume to continue automatically. Otherwise
the simulation stops and ngspice waits for user input.

If you try to stop at
stop when V(1) eq 1

(or similar) during a transient simulation, you probably will miss this point, because it is not
very likely that at any time step the vector v(1) will have the exact value of 1. Then ngspice
simply will not stop.

13.5.92 Strcmp: Compare two strings

General Form:

strcmp _flag $stringl "string2"

The command compares two strings, either given by a variable (string1) or as a string in quotes
(‘string2’). _flag is set as an output variable to ’0’, if both strings are equal. A value greater
than zero indicates that the first character that does not match has a greater value in strl than in
str2; and a value less than zero indicates the opposite (like the C strcmp function).

13.5.93 Strslice: Extract a substring
General Form:

strslice result input offset length

This command sets variable ‘result’ to be a portion of string ’input’ starting at the given offset
and with the requested length. Offset and length should be integers. If offset is negative, it is
counted from the end of the input string.

13.5.94 Strstr: Find a substring

General Form:

strstr result "$haystack" needle

The command searches string variable "haystack’ for a copy of string "needle’. If successful,
variable ’result’ is set to the offset of the first match. Otherwise, the result is -1. As a special
case, if "needle’ is the empty string, the result is the length of $haystack.

13.5.95 Sysinfo: Print system information

General Form:

sysinfo

13.5.

COMMANDS

437

The command prints system information useful for sending bug report to developers. Informa-
tion consists of

Name of the operating system,
CPU type,

Number of physical processors,
Number of logical processors,
Total amount of DRAM available,

DRAM currently available.

The example below shows the use of this command.

ngspice 1 -> sysinfo

0S: CYGWIN_NT-5.1 1.5.25(0.156/4/2) 2008-06-12 19:34
CPU: Intel(R) Pentium(R) 4 CPU 3.40GHz

Logical processors: 2

Total DRAM available = 1535.480469 MB.

DRAM currently available = 984.683594 MB.

ngspice 2 ->

This command has been tested under Windows OS and Linux. It may not be available in your
operating system environment.

13.5.96 TTf: Run a Transfer Function analysis

General Form:

tf output_node input_source

The tf command performs a transfer function analysis, returning:

the transfer function (output/input),
output resistance,

and input resistance

between the given output node and the given input source. The analysis assumes a small-signal
DC (slowly varying) input. The following example file

438 CHAPTER 13. INTERACTIVE INTERPRETER

Example input file:

* Tf test circuit

VS 1 0 dc 5
ril 100
r2 50
r3 150
r4 200

N W IN =
o O WN

.control

tf v(3,5) vs
print all
.endc

.end

will yield the following output:
transfer_function = 3.750000e-001
output_impedance_at_v(3,5) = 6.662500e+001

vs#input_impedance = 2.000000e+002

13.5.97 Trace: Trace nodes

General Form:

trace [node ...]
For every step of an analysis, the value of the node is printed. Several traces may be active at

once. Tracing is not applicable for all analyses. To remove a trace, use the delete (13.5.21)
command.

13.5.98 Tran: Perform a transient analysis
General Form:

tran Tstep Tstop [Tstart [Tmax]] [UIC]

Perform a transient analysis. See Chapt. 11.3.10 of this manual for more details.

An interactive transient analysis may be interrupted by issuing a ctrl-¢ (control-C) command.
The analysis then can be resumed by the resume command (13.5.67). Several options may be
set to control the simulation (11.1.4).

13.5. COMMANDS 439

13.5.99 Transpose: Swap the elements in a multi-dimensional data set

General Form:

transpose vector vector ...

This command transposes a multidimensional vector. No analysis in ngspice produces multidi-
mensional vectors, although the DC transfer curve may be run with two varying sources. You
must use the reshape command to reform the one-dimensional vectors into two dimensional
vectors. In addition, the default scale is incorrect for plotting. You must plot versus the vec-
tor corresponding to the second source, but you must also refer only to the first segment of
this second source vector. For example (circuit to produce the transfer characteristic of a MOS
transistor):

How to produce the transfer characteristic of a MOS transistor:

ngspice > dc vgg 0 5 1vdd 0651

ngspice > plot i(vdd)

ngspice > reshape all [6,6]

ngspice > transpose i(vdd) v(drain)
ngspice > plot i(vdd) vs v(drain)[0]

13.5.100 Unalias: Retract an alias

General Form:

unalias [word ...]

Removes any aliases present for the words.

13.5.101 Undefine: Retract a definition

General Form:

undefine [function ...]
undefine x

Definitions for the named user-defined functions are deleted. If * is given, all user-defined
functions are deleted.

13.5.102 Unlet: Delete the specified vector(s)
General Form:

unlet [vector ...]

Delete the specified vector(s). See also let (13.5.45).

440 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.103 Unset: Clear a variable

General Form:

unset [word ...]
unset x

Clear the value of the specified variable(s) (word). If * is specified, all variables are cleared.

13.5.104 Version: Print the version of ngspice

General Form:
version [-s | -f | <version id>]

Print out the version of ngspice that is running, if invoked without argument or with -s or -f. If
the argument is a <version id> (any string different from -s or -f is considered a <version id>
), the command checks to make sure that the arguments match the current version of ngspice.
(This is mainly used as a Command: line in rawfiles.)

Options description:

* No option: The output of the command is the message you can see when running ngspice
from the command line, no more no less.

» -s(hort): A shorter version of the message you see when calling ngspice from the com-
mand line.

 -f(ull): You may want to use this option if you want to know what extensions are included
into the simulator and what compilation switches are active. A list of compilation options
and included extensions is appended to the normal (not short) message. May be useful
when sending bug reports.

The following example shows what the command returns in some situations:

13.5. COMMANDS 441

Use of the version command:

ngspice 10 -> version

kokokokokok

**x ngspice-39 : Circuit level simulation program

*x The U. C. Berkeley CAD Group

*+ Copyright 1985-1994, Regents of the University
of California.

xx Copyright 2001-2023, The ngspice team.

*x Please get your ngspice manual from
https://ngspice.sourceforge.io/docs.html

x*x Please file your bug-reports at
https://ngspice.sourceforge.io/bugrep.html

xx Creation Date: Mar 7 2023 17:25:48

%k kok kok

ngspice 2 ->

ngspice 11 -> version 14

Note: rawfile is version 14 (current version is 39)

ngspice 12 -> version 39

ngspice 13 ->

Note for developers: The option listing returned when version is called with the
-f flag is built at compile time using #ifdef blocks. When new compile switches
are added, if you want them to appear on the list, you have to modify the code in
misccoms.c.

13.5.105 Where: Identify troublesome node or device

General Form:

where

When performing a transient or operating point analysis, the name of the last node or device to
cause non-convergence is saved. The where command prints out this information so that you
can examine the circuit and either correct the problem or generate a bug report. You may do this
either in the middle of a run or after the simulator has given up on the analysis. For transient
simulation, the iplot command can be used to monitor the progress of the analysis. When the
analysis slows down severely or hangs, interrupt the simulator (with control-C) and issue the
where command. Note that only one node or device is printed; there may be problems with
more than one node.

442 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.106 Wrdata: Write data to a file (simple table)

General Form:

<set wr_singlescale>
<set wr_vecnames>
<option numdgt=7>

wrdata [file] [vecs]

Writes out the vectors to file.

This is a very simple printout of data in array form. Variables are written in pairs: scale vector,
value vector. If variable is complex, a triple is printed (scale, real, imag). If more than one
vector is given, the third column again is the default scale, the fourth the data of the second
vector. The default format is ASCII. All vectors have to stem from the same plot, otherwise a
segfault may occur. Setting wr_singlescale as variable, the scale vector will be printed only
once, if scale vectors are of the same length (you have to take care of that yourself). Setting
wr_vecnames as variable, scale and data vector names are printed on the first row. The number
of significant digits is set with option numdgt.

output example from two vectors:

0.000000e+00 -1.845890e-06 0.000000e+00 0.000000e+00
7.629471e+06 4.243518e-06 7.629471e+06 -4.930171e-06
1.525894e+07 -5.794628e-06 1.525894e+07 4.769020e-06
2.288841e+07 5.086875e-06 2.288841e+07 -3.670687e-06
3.051788e+07 -3.683623e-06 3.051788e+07 1.754215e-06
3.814735e+07 1.330798e-06 3.814735e+07 -1.091843e-06
4.577682e+07 -3.804620e-07 4.577682e+07 2.274678e-06
5.340630e+07 9.047444e-07 5.340630e+07 -3.815083e-06
6.103577e+07 -2.792511e-06 6.103577e+07 4.766727e-06
6.866524e+07 5.657498e-06 6.866524e+07 -2.397679%e-06

If variable appendwrite is set, the data may be added to an existing file.

13.5.107

General Form:

write [file] [exprs]

Writes out the expressions to file.

Write: Write data to a file (Spice3f5 format)

First vectors are grouped together by plots, and written out as such (i.e. if the expression list
contained three vectors from one plot and two from another, then two plots are written, one
with three vectors and one with two). Additionally, if the scale for a vector isn’t present it is
automatically written out as well.

13.5. COMMANDS 443

The default format is a compact binary, but this can be changed to ASCII with the set file-
type=ascii command. The default file name is either rawspice.raw or the argument of the
optional -r flag on the command line, and the default expression list is all.

If variable appendwrite is set, the data may be added to an existing file. If variable nopadding
is set, fewer output values are written in each group as shorter vectors are exhausted. Otherwise
dummy zero values are inserted. The “dims=" flag in the header identifies vectors with non-
default length or dimensions. If variable keep#branch is set, vector names with “name#branch”
syntax are not converted to “i(name)” in the raw file header.

13.5.108 Wrnodev: Write node voltage values to a file (.ic=xx format)

General Form:

wrnodev [file]

Writes out the values of all voltage nodes to file. The format is .ic=xx. Thus the file may be
included into another simulation of the same circuit and deliver initial conditions for all voltage
nodes. For example you may start a transient simulation, stop it and use the current data to start
an ac simulation.

output example:

* Intermediate Transient Solution

* Circuit: KiCad schematic

* Recorded at simulation time: 3.9
.ic v(net-_dlal-pad2_) = -31.2016

.ic v(-32) = -32

(
.ic v(out) = -0.267414
.ic v(net-_g5-pad2_) = -26.5798
.ic v(g5tj) = 132.521
.ic v(g5tc) = 105.091

The following control section snippet serves to save node voltage data at time 3.9 s and after
the end of the transient simulation.

usage example (write data):

stop when time=3.9

tran 20u 6
wrnodev $inputdir/F5icl.txt
resume

wrnodev $inputdir/F5ic2.txt

The data may be reused by an .include command: The simulation now starts with the initial
condition given in the file.

444 CHAPTER 13. INTERACTIVE INTERPRETER

usage example (read data):

.include F5icl.txt

13.5.109 Wrs2p: Write scattering parameters to file (Touchstone® for-
mat)

General Form:

wrs2p [file]

Writes out the s-parameters of a two-port to file.

In the active plot the following is required: vectors frequency, S_1_1, S_1_2, S_2 1, and
S_2_2, all having the same length and having complex values (as a result of an ac analysis), and
vector Rbase. For details how to generate these data see Chapt. 13.9.

The file format is Touchstone® Version 1, ASCII, frequency in Hz, real and imaginary parts of
S_n_n versus frequency.

The default file name is s-param.s2p.

output example:

12-port S-parameter file

ITitle: test for scattering parameters

IGenerated by ngspice at Sat Oct 16 13:51:18 2010

Hz S RI R 50

I'freq ReS11 ImS11 ReS21
2.500000e+06 -1.358762e-03 -1.726349e-02 9.966563e-01
5.000000e+06 -5.439573e-03 -3.397117e-02 9.867253e-01 ...

13.6 Control Structures

The following loops and examples are valid if putinto a .controlendc section.

13.6.1 While - End

General Form:

while condition
statement

end

While condition, an arbitrary algebraic expression, is true, execute the statements.

13.6. CONTROL STRUCTURES 445

Example:

let loopindex = 0
while loopindex < 5

echo index is $&loopindex

let loopindex = loopindex + 1
end

Comment: let creates a vector. Convert vector Loopindex to number (as required by echo) by
$&loopindex. The condition statement compares vectors.

13.6.2 Repeat - End

General Form:

repeat [number]
statement

end
Execute the statements number times, or forever if no argument is given.

Examples: Comment:

* plain number
repeat 3
echo How many loops? Count yourself!
end
echo
* variable
set loops =7
repeat $loops
echo How many loops? $loops
end
echo
x vector
let loopvec = 4
repeat $&loopvec
echo How many loops? $&loopvec
end

set creates a variable. repeat requires a number as parameter, either a plain number or con-
verted from vector by $&loopvec or converted from variable by $loops.

446 CHAPTER 13. INTERACTIVE INTERPRETER

13.6.3 Dowhile - End

General Form:

dowhile condition
statement

end
The same as while, except that the condition is tested after the statements are executed.

Example:

let loopindex = 0
dowhile loopindex <> 5
echo index is $&loopindex
let loopindex = loopindex + 1
end

13.6.4 Foreach - End

General Form:

foreach var value ...
statement

end
The statements are executed once for each of the values, each time with the variable var set to
the current value. (var can be accessed by the $var notation - see below).

Examples:

foreach val -40 -20 0 20 40
echo var is $val

end

echo

set myvariable = (-4 -2 0 2 4)

foreach var $myvariable
echo var is $var

end

echo

let myvec = vector(5)

foreach var $&myvec
echo var is $var

end

The values themselves may be set by a variable like myvariable or a vector like myvec.

13.6. CONTROL STRUCTURES 447

13.6.5 1If - Then - Else

General Form:

if condition

statement

else

statement

end
If the condition is non-zero then the first set of statements are executed, otherwise the second
set. The else and the second set of statements may be omitted.

Example:

foreach val -40 -20 0 20 40
if $val < 0
echo variable $val is less than 0
else
echo variable $val is greater than or equal to 0
end
end
echo
let vec =1
if vec =1 ; if $&vec =1 is possible as well
echo vec is $&vec
end

Comment: The condition may be evaluated by numbers or vectors. Variables have to be parsed
to numbers like $val.

13.6.6 Label

General Form:

label word

If a statement of the form goto word is encountered, control is transferred to this point, other-
wise this is a no-op.

13.6.7 Goto

General Form:

goto word

448 CHAPTER 13. INTERACTIVE INTERPRETER

If a statement of the form label word is present in the block or an enclosing block, control is
transferred there. Note that if the label is at the top level, it must be before the goto statement
(i.e, a forward goto may occur only within a block). A block to just include goto on the top
level may look like the following example.

Example noop block to include forward goto on top level:

if (1)
goto gohere

label gohere
end

13.6.8 Continue

General Form:

continue [n]

If there is a while, dowhile, or foreach block n levels of loops above the enclosing this
statement, control passes to the test controlling that loop, or in the case of foreach, the next
value for that loop is taken. If n is not specified, it is assumed to be 1 and acts on the loop
immediately enclosing the continue command. If the value of O is given, it treated as a no-op.

13.6.9 Break

General Form:

break [n]

If there is a while, dowhile, or foreach block n levels of loops above the enclosing this
statement, control passes out of the block. If n is not specified, it is assumed to be 1 and acts
on the loop immediately enclosing the break command. If the value of O is given, it treated as
a no-op.

Of course, control structures may be nested. When a block is entered and the input is the
terminal, the prompt becomes a number of >’s corresponding to the number of blocks the user
has entered. The current control structures may be examined with the debugging command
cdump (see 13.5.13).

13.7 Internally predefined variables

The operation of both ngutmeg and ngspice may be affected by setting variables with the set
command (13.5.73). In addition to the variables mentioned below, the set command also af-
fects the behavior of the simulator via the options previously described under the section on

13.7. INTERNALLY PREDEFINED VARIABLES 449

.OPTIONS (11.1). You also may define new variables or alter existing variables inside . control
.. .endc for later use in a user-defined script (see Chapt. 13.8).

The following list is in alphabetical order. All of these variables are acknowledged by ngspice.
Frontend variables (e.g. on circuits and simulation) are not defined in ngnutmeg. The predefined
variables that may be set or altered by the set command are

addcontrol Set by ngspice if run with the -a command line parameter. When set, additional
lines are added to netlists to ensure that a simulation is run.

altshow When set, an alternate, non-tabular output format is used by the show and showmod
commands.

appendwrite Append to the file when a write command is issued, if one already exists.

askquit Check to make sure that there are circuits suspended or plots unsaved. ngspice warns
the user when he tries to quit if this is the case.brief If set to FALSE, the netlist will be
printed.

auto_bridge When set to zero, automatic insertion of bridging devices (8.7) is disabled.

auto_bridge_xxxx Variables of this general format are used to control insertion of automatic
bridging devices. See section 8.7.

batchmode Set by ngspice if run with the -b command line parameter. May be used in input
files to suppress plotting if ngspice runs in batch mode.

brief Suppresses automatic display of the processed netlist. It is set by default.

colorN These variables determine the colors used during plotting. Color values may be entered
as RGB values from 0 to 255 (hex or decimal) or stating a color name. The identification
number N may be an integer between 0 and 22. Color0 is the background, colorl is the
grid and text color, and color ids from 2 through 22 are used for graphs (vectors) plotted.
Hex color coding is done according to set colorN=rgb:r/g/b, where r, g, and b may
range from 00 to FF each. For example green is selected by set color3=rgb:00/FF/00.
Decimal coding is available as set colorN=rgbd: rd/gd/bd, where rd, gd, and bd may
range from 0 to 255. If X11 is being run (Linux, macOS, Cygwin), the value of the color
variables may be any of the standard X-Server color names, which may be found in file
/usr/1ib/rgb.txt. ngspice GUI for Windows supports color names according to the
Naming Common Colors project. Details with more than 140 color names are to be found
in file wincolornames.h. An example is set color3=blue. If no color id is set, then
a predefined set of colors is applied automatically.

controlswait (only available with shared ngspice, chapt. 15.4.1.4) If the simulation is started
with the background thread (command bg_run), the .control section commands are exe-
cuted immediately after bg_run has been given, i.e. typically before the simulation has
finished. This often is not very useful because you want to evaluate the simulation results.
If controlswait is set in .spiceinit or spice.rc, the command execution is delayed until the
background thread has returned (aka the simulation has finished). If set controlswait
is given inside of the .control section, only the commands following this statement are
delayed.

https://www.codeproject.com/Articles/1276/Naming-Common-Colors

450 CHAPTER 13. INTERACTIVE INTERPRETER

cpdebug Print control debugging information.

csnumprec Allows setting the precision of values derived from vectors and variables (by $var,
$&vec) as arguments to functions listet in chapter 13.5. Default is 6, as has been standard
up to now. If functions are using directly a vector as input (without the tranfer to number
by $&), full double precision is used.

curplot (read only) Returns <type><no.> of the current plot. Type is one of tran, ac, op, sp,
dc, unknown, no. is a number, sequentially set internally. This information is used to
uniquely identify each plot.

curplotdate Sets the date of the current plot.

curplotname Sets the name of the current plot.

curplottitle Sets the title (a short description) of the current plot.
debug If set then a lot of debugging information is printed.

device The name (/dev/tty??) of the graphics device. If this variable isn’t set then the
user’s terminal is used. To do plotting on another monitor you probably have to set both
the device and term variables. (If device is set to the name of a file, nutmeg dumps the
graphics control codes into this file — this is useful for saving plots.)

diff_abstol The relative tolerance used by the diff command (default is 1e-12).
diff_reltol The relative tolerance used by the diff command (default is 0.001).

diff_vntol The absolute tolerance for voltage type vectors used by the diff command (default
is le-6).

digital_delay_type Controls the behaviour of XSPICE digital elements that support the
inertial_delay parameter.

echo Print out each command before it is executed.
editor The editor to use for the edit command.

enable_noisy_r A user definable variable (for .spiceinit) to enable noise calculation for all
behavioral resistors. May locally be switched off by instance parameter noisy=0. If
enable_noisy_r is not set, noise simulation may locally be enabled by instance param-
eter noisy=1.

filetype This can be either ascii or binary, and determines the format of the raw file (com-
pact binary or text editor readable ascii). The default is binary. CIDER output (26.14)
may be binary or ascii as well.

fourgridsize How many points to use for interpolating into when doing Fourier analysis.

fournosave suppresses vector generation from THD calculation with *four’ (13.5.35) com-
mand.

13.7. INTERNALLY PREDEFINED VARIABLES 451

gridsize If this variable is set to an integer, this number is used as the number of equally
spaced points to use for the Y axis when plotting. Otherwise the current scale is used
(which may not have equally spaced points). If the current scale isn’t strictly monotonic,
then this option has no effect.

gridstyle Sets the grid during plotting with the plot command. Will be overridden by direct
entry of gridstyle in the plot command. A linear grid is standard for both x and y axis.
Allowed values are lingrid loglog xlog ylog smith smithgrid polar nogrid.

hcopydev If this is set, when the hardcopy command is run the resulting file is automatically
printed on the printer named hcopydev with the command lpr -Phcopydev -g file.

hcopyfont This variable specifies the font name for hardcopy output plots. The value is device
dependent.

hcopyfontsize This is a scaling factor for the font used in hardcopy plots.

hcopydevtype This variable specifies the type of the printer output to use in the hardcopy com-
mand. If hcopydevtype is not set, Postscript format is assumed. plot (5) is recognized
as an alternative output format. When used in conjunction with hcopydev, hcopydevtype
should specify a format supported by the printer.

hcopyscale This is a scaling factor for the font used in hardcopy plots (between 0 and 10).
hcopywidth Sets width of the hardcopy plot.
hcopyheight Sets height of the hardcopy plot.

hcopypscolor Sets the color of the hardcopy output. If not set, black & white plotting is
assumed with different linestyles for each output vector. A valid color integer value yields
a colored plot background (0: black 1: white, others see below). and colored solid lines.
This is valid for Postscript only.

hcopypstxcolor This variable sets the color of the text in the Postscript hardcopy output. If
not set, black on white background is assumed, else it will be white on black background.
Valid colors are 0: black 1: white 2: red 3: blue 4: orange 5: green 6: pink 7: brown 8:
khaki 9: plum 10: orchid 11: violet 12: maroon 13: turquoise 14: sienna 15: coral 16:
cyan 17: magenta 18: gray (for smith grid) 19: gray (for smith grid) 20: gray (for normal
grid).

height The length of the page for asciiplot and print col.
history The number of events to save in the history list.
histsubst Set to enable history substitution in the command interpreter (13.5.41).

inputdir The directory path of the last input file. It may be used to direct outputs into a
directory relative to the input (even the into the same directory) by e.g. the command
write $inputdir/outfile.raw vecl vec2.

interactive If interactive is set, numparam error handling may be done manually with
user input from the console. If not, ngspice will exit upon a numparam error.

452 CHAPTER 13. INTERACTIVE INTERPRETER

keep#branch If keep#branch is set, the rawfile output for branch currents is 1 v1#branch
current for example, not 1 i(v1l) current. This retains compatibility with software
like ICCAP.

lprplot5 This is a printf(3s) style format string used to specify the command to use for
sending plot(5)-style plots to a printer or plotter. The first parameter supplied is the
printer name, the second parameter is a file name containing the plot. Both parameters
are strings.

lprps Thisisaprintf(3s) style format string used to specify the command to use for sending
Postscript plots to a printer or plotter. The first parameter supplied is the printer name,
the second parameter is the file name containing the plot. Both parameters are strings.

measoutfile Add command set measoutfile=<path/filename> to .spiceinit or to a .con-
trol section in the netlist to save .measure results from batch mode in a file.

modelcard The name of the model card (normally .MODEL)

moremode If moremode is set, whenever a large amount of data is being printed to the screen
(e.g, the print or asciiplot commands), the output is stopped every screenful and
continues when a carriage return is typed. If moremode is unset, then data scrolls off the
screen without pausing.

nfreqs The number of frequencies to compute in the Fourier command. (Defaults to 10.)

ngbehavior Sets the compatibility mode of ngspice. Default value is "all’. To be set in spinit
(12.5) or .spiceinit (12.6). A value of 'all’ improves compatibility with commercial
simulators. Full compatibility is however not the intention of ngspice! The values ’ps’,
"psa’, 'l1t’, "lta’, "hs’ and 'spice3’ are available. See Chapt. 12.14.

ngdebug enables several debugging printouts (see 12.16).

nginfo Enables a status report during simulation (currently available only with MS Windows
GUI version).

ng_nomodcheck Suppresses any model parameter check, if set.

no_auto_gnd Setting this boolean variable by set no_auto_gnd in spinit or .spiceinit, ngspice
will refrain from replacing all nodes named gnd by node 0. In using this setting, you will
have to take care of proper zeroing appropriate ground nodes. If you fail to do so, ngspice
may crash, or deliver wrong results.

nobreak Don’t have asciiplot and print col break between pages.
noasciiplotvalue Don’t print the first vector plotted to the left when doing an asciiplot.

nobjthack BJTs can have either 3 or 4 nodes, which makes it difficult for the subcircuit ex-
pansion routines to decide what to rename. If the fourth parameter has been declared as a
model name, then it is assumed that there are 3 nodes, otherwise it is considered a node.
To disable this, you can set the variablenobjthack and force BJTs to have 4 nodes (for
the purposes of subcircuit expansion, at least).

noclobber Don’t overwrite existing files when doing 10 redirection.

13.7. INTERNALLY PREDEFINED VARIABLES 453

noglob Don’t expand the global characters ‘x’, ‘?°, ‘[’, and ‘]’. This is the default.
nolegend Don’t plot the legend, when using the plot command..

nonomatch If noglob is unset and a global expression cannot be matched, use the global char-
acters literally instead of complaining.

nopadding Don’t insert padding values in raw files.

noparse Don’t attempt to parse input files when they are read in (useful for debugging). Of
course, they cannot be run if they are not parsed.

noprintscale Don’t print the scale in the leftmost column when a print col command is
given.

nosavecurrents If set by ’set nosavecurrents’ and followed by ’reset’, the setting of
internal current vectors (.options savecurrents) is suppressed. This is useful in ac
simulation which does not support options savecurrents’ and you have a mix of
several simulations in a single script.

nosort Don’tlet display sort the variable names.

nostepsizelimit The maximum step size during transient simulation is per default limited
to tstep given by .tran tstep tstop <tstart <tmax>> (11.3.10, 13.5.98). It may be over-
ridden and set to a value of (tstop - tstart)/50 by adding 'set nostepsizelimit’ to
.spiceinit. Both may be overriden by setting tmax on the .tran line.

nosubckt Don’t expand subcircuits.
notrnoise Switch off the transient noise sources (Chapt. 4.1.7).bg

nounits Plotting of the units token for the x and y axes of a graph is suppressed. Units may
be added manually to the y and x labels for SI conformity.

numdgt The number of digits to use when printing tables of data (print col). The default
precision is 6 digits. On the PC, approximately 16 decimal digits are available using
double precision, so p should not be more than 16. If the number is negative, one fewer
digit is printed to ensure constant widths in tables.

num_threads The number of of threads to be used if OpenMP (see Chapt. 12.10) is selected.
The default value is 2.

oscompiled is set during ngspice compilation and returns a number corresponding to the op-
erating environment used during compilation. 0 Other, 1 MINGW for MS Windows,
2 Cygwin for MS Windows, 3 FreeBSD, 4 OpenBSD, 5 Solaris, 6 Linux, 7 macOS, 8
Visual Studio for MS Windows .

osdi_enabled is set by ngspice upon start-up when the OSDI interface (9.2) is compiled in.

plainlet Command let (13.5.45) will executed without evaluating any expression in its com-
mand line. This is useful if characters like ’/° are part of the vector names, e.g. as issued
by KiCad. Setting plainlet may be used to rename a vector including such math char-
acters into a vector using only standard characters. Then standard plot, print, and write
commands may be applied to this renamed vector.

454 CHAPTER 13. INTERACTIVE INTERPRETER

plainplot Command plot (13.5.56) will executed without evaluating any expression in its
command line. This is useful if characters like °/* are part of the vector names.

plainwrite Command write (13.5.107) will executed without evaluating any expression in
its command line. This is useful if characters like ’/* are part of the vector names.

plotstyle This should be one of linplot, combplot, or pointplot. linplot, the default,
causes points to be plotted as parts of connected lines. combplot causes a comb plot to be
done. It plots vectors by drawing a vertical line from each point to the X-axis, as opposed
to joining the points. pointplot causes each point to be plotted separately.

pointchars Set a string as a list of characters to be used as points in a point plot. Standard is
‘ox*+#abcdefhgijklmnpqrstuvwyz’. Some characters are forbidden.

polydegree The degree of the polynomial that the plot command should fit to the data. If
polydegree is N, then ngspice fits a degree N polynomial to every set of N points and
draws 10 intermediate points in between each end point. If the points aren’t monotonic,
then ngspice tries to rotate the curve and reduce the degree until a fit is achieved.

polysteps The number of points to interpolate between every pair of points available when
doing curve fitting. The default is 10.

program The name of the current program (argv[0]).

prompt The prompt, with the character ‘!’ replaced by the current event number. Single quotes
" " are required around the specified string unless you really want it expanded.

ps—_scan_gates_optimize (default 1). If < 1, then turn off the optimizations in scan_gates.
rawfile The default name for created rawfiles.

remote_shell Overrides the name used for generating rspice runs (default is rsh).
renumber Renumber input lines when an input file has . includes.

rndseed Seed value for random number generator (used by sgauss, sunif, and rnd func-
tions). It is set by the option command "option seed=val|random’.

rhost The machine to use for remote ngspice runs, instead of the default one (see the descrip-
tion of the rspice command, below).

rprogram The name of the remote program to use in the rspice command.

rsdiode A series resistance in all diodes models may be set, if none is given in the model
parameter set..

sharedmode Variable is set when ngspice runs in its shared mode (from ngspice.dll or ngspice_xx.so).
May be used in universal input files to suppress plotting because a graphics interface is
lacking.

shellstatus Contains the status returned by the last “shell” command.

silent_fileio If set, the fopen and fread commands do not print error messages. Errors are
still reported by setting a variable.

13.7. INTERNALLY PREDEFINED VARIABLES 455

sim_status will bet set to 0 when the simulation starts. If there is an error and the simulation
fails with *xx simulation(s) aborted’, then sim_status is set to 1. The variable can be
used in scripted loops within a transient simulation to allow special handling e.g. in case
of non-convergence.

skywaterpdk will speed up the loading of large PDKs (tested with Skywater 130) by avoiding
some checks during library loading. When set, ngspice assumes that all MOS devices
have exactly 4 terminals. It does not look for unquoted parameters, so assumes that all
parameters are quoted correctly by { } or’ ’.

sourcepath A list of the directories to search when a source command is given, or .include
or .lib is processed. The default is the current directory and the standard ngspice li-
brary (/usr/local/lib/ngspice, or whatever LIBPATH is #defined to in the ngspice
source). The command
setcs sourcepath = (e:/ D:/ . «c:/Spice/Examples)
will overwrite the default. setcs is used to keep upper case letters. The search sequence
now is: current directory, €:/, D3/, current directory (again due to .), c:/Spice/Examples.
"Current directory’ is depending on the OS. The command
setcs sourcepath = (D:/mypath/input $sourcepath)
will add another path entry in front of the already existing list of paths. This feature may
be used with shared ngspice (15) to send a input path to code models which require file
input, like d_source. Only the first entry in the sourcepath list is sent to the code models,
however.

specwindow Windowing for commands spec (13.5.88) or fft (13.5.33). May be one of the
following: bartlet blackman cosine gaussian hamming hanning none rectangular
triangle.

specwindoworder Integer value 2 - 8 (default 2), used by commands spec or fft.
spicepath The program to use for the aspice command. The default is /cad/bin/spice.

sgrnoise If set, noise data outputs will be given as V2 /Hz or A2 /Hz, otherwise as the usual
V/v/HzorA/\/Hz.

strict_errorhandling If set by the user, an error detected during circuit parsing will imme-
diately lead ngspice to exit with exit code 1 (see 14.5). May be set in files spinit (12.5) or
.spiceinit (12.6) only.

subend The card to end subcircuits (normally .ends).

subinvoke The prefix to invoke subcircuits (normally X).

substart The card to begin subcircuits (normally . subckt).

term The mfb name of the current terminal.

ticchar A character applied as a tic mark (replaces the default "x”).

ticmarks An integer value n, every n data points a tic (default: a small *x”) will be set on your
graph.

456 CHAPTER 13. INTERACTIVE INTERPRETER

ticlist A list of integers, e.g. (4 14 24), selects data points to set tics (small x’) on your
graph.

units If this is degrees, then all the trig functions will use degrees instead of radians.

unixcom If a command isn’t defined, try to execute it as a UNIX command. Setting this option
has the effect of giving a rehash command, below. This is useful for people who want to
use ngspice as a login shell.

wfont Set the font for the graphics plot in MS Windows. Typical fonts are courier, times,
arial and all others found on your machine. Default is courier.

wfont_size The size of the windows font. The default depends on system settings.
width The width of the page for asciiplot and print col (see also 11.6.7).
win_console is set when ngspice runs in a console under Windows.

wr_onespace Command wrdata: Print data with one space only in between, not by collumns
with fixed width.

wr_singlescale Command wrdata: The scale vector will be printed only once, if all scale
vectors are of the same length.

wr_vecnames Command wrdata: Scale and data vector names are printed on the first row.

x11llineararcs Some X11 implementations have poor arc drawing. If you set this option,
ngspice will plot using an approximation to the curve using straight lines.

xbrushwidth Linewidth for graph (see xgridwidth for border and grid). Valid for MS Win-
dows GUI, X11, gnuplot and Postscript.

xgridwidth Linewidth for border and grid. Valid for MS Windows GUI, X11, gnuplot and
Postscript.

xfont Set the font for text (x and y labels, axis values) in the graphics plot in X11 (Linux,
Cygwin, macOS etc.). The command fc-1list | cut -f2 -d: | sort -u | less
-r lists the font names that are installed on the computer and are suited for this variable.
Use xfont with the setcs command to keep lower case and upper case characters, e.g. in
setcs xfont='Noto Sans CJK JP’'. The’Noto Sans’ font family is very well suited,
covering Western and Asian fonts. Also valid for gnuplot and Postscript.

xfont_size The size of the X11 font. The default depends on system settings.

xspice_enabled is set by ngspice upon start-up, when the XSPICE option (II) for using code
models is compiled in.

xtrtol Set trtol, e.g. to 7, to avoid the default speed reduction (accuracy increase) for
XSPICE (see 12.9). Be aware of potential precision degradation or convergence issues
using this option.

https://www.google.com/get/noto/

13.8. SCRIPTS 457

13.8 Scripts

Ngspice is started in batch or interactive mode with an input file on the command line. Input
files may also be sourced later with the source command or by using the script name as a
command. The ngspice input file contains the usual circuit netlist, model cards, and may also
contain a command script, enclosed in a .control .. .endc section. Expressions, functions,
constants, commands, variables, vectors, and control structures may be assembled into such
scripts.

Scripting allows automation of any ngspice task: simulations to perform, output data to analyze,
repeat simulations with modified parameters, assemble output plot vectors. The ngspice script-
ing language is not very powerful, but well integrated into the simulation flow. After reading
the input file, any command sequences are immediately processed. Variables or vectors set by
previous commands may be referenced by the commands following them. Data can be stored,
plotted or grouped into new vectors for either plotting or other means of data evaluation.

An input file may contain only a title and the .control .. .endc section: it is a pure script.
The need for a title (that may be blank) is an unfortunate result of the source command being
used for both circuit input and command file execution. Note that this does allow the user to
merely type the name of a circuit file as a command and it is automatically run. The commands
are executed immediately, without running any analyses that may be specified in the circuit (to
execute the analyses before the script executes, include a run command in the script).

An alternative way to indicate a pure script is to put *ng_script in the first line, the rest
of the file is then treated as if it were inside a control section. As a special case, if a script
file begins with *xng_script_with_params and it was the first non-option argument on the
ngspice command line, then remaining command arguments are treated as script arguments,
not additional netlists.

Before a script is read, the variables argc and argv are set to the number of words following
the file-name on the command line, and a list of those words respectively. Individual script
arguments may be accessed as $1, $2 etc. After the file is finished, these variables are unset.
Note that if a command file calls another, it must save its argv and argc since they are altered.
Also, command files may not be re-entrant since there are no local variables. Of course, the
procedures may explicitly manipulate a stack ...; that way one can write scripts analogous to
shell scripts for ngspice.

13.8.1 Variables

Variables are defined and initialized with the set command (13.5.73). set output=10 defines
the variable output and sets it to the number 10. Predefined variables, which are used inside
ngspice for specific purposes, are listed in Chapt. 13.7. Variables are accessible globally. The
values of variables may be used in commands by writing $varname where the value of the
variable is to appear, e.g. $output. If a variable is substituted that is not defined internally, but
is defined in the program environment, then the external value is used. The special variable $$
refers to the process ID of the program. With $< a line of input is read from the terminal.

If a variable is assigned with $&word, then word must be a vector (see below), and word’s
numeric value is taken to be the new value of the variable.

Variables may have a value that is a list of values. If foo is a valid variable, and is of type
list, then the expression $foo[low-high] expands to a range of elements. Either the upper or

458 CHAPTER 13. INTERACTIVE INTERPRETER

lower index may be left out, and in addition to slicing also reversing of a list is possible through
$foo[len-0] (len is the length of the list, the first valid index is always 1).

Furthermore, the notation $?foo evaluates to 1 if the variable foo is defined, O otherwise, and
$#foo evaluates to the number of elements in foo if it is a list, 1 if it is a number or string, and
0 if it is a Boolean variable.

13.8.2 Vectors

Ngspice data is in the form of vectors: time, voltage, etc. Each vector has a type, and vectors
can be operated on and combined algebraically in ways consistent with their types. Vectors are
normally created as a result of a transient or dc simulation. They are also established when a
data file is read in (see the load command 13.5.48), or they are created with the let command
13.5.45 inside a script. If a variable X is assigned something of the form $&word, then word has
to be a vector, and the numeric value of word is transferred into the variable X.

13.8.3 Assessing vectors in subcircuits

Node voltages and branch currents from within a subcircuit may be read with a special syntax.
After circuit parsing, subcircuits are expanded, their names have become part of each node
name.

Input file example with nested subcircuits:

* test node names from subcircuits
Xsubl a b subl

.subckt subl nll nl2
Xsub2 nll nl2 sub2
R11 nll intl 1k

R12 nl12 intl 1k
.ends

.subckt sub2 n21 n22
R21 n21 int2 1k

R22 n22 int2 1k
.ends

.end

Subcircuit instance Xsubl calls subcircuit subl which contains a subcircuit instance Xsub?2
calling sub2 which contains node int2.

Internal circuit resulting from subcircuit expansion:

r.xsubl.xsub2.r2l a xsubl.xsub2.int2 1k
r.xsubl.xsub2.r22 b xsubl.xsub2.int2 1k
r.xsubl.rll a xsubl.intl 1k
r.xsubl.rl2 b xsubl.intl 1k

13.8. SCRIPTS 459

After expansion the subcircuits have disappeared. We now have extended node (aka vector)
names like xsubl.intl or xsubl.xsub2.int2. The top level subcircuit call name is followed
by node name, separated by a dot. Or the top level subcircuit call name is followed second level
subciruit call name, then followed by node name, each again separated by a dot. You may now
assess the node int2 values in a script by

print v(xsubl.xsub2.int2)

Also the device instances have got their subcircuit information added to their names in a similar
way. In addition the type identifier letter (e.g. R for resistor) has been put in front. So the
resistor instances now are called r.xsubl.rll or r.xsubl.xsub2.r22.

13.8.4 Commands

Commands have been described in Chapt. 13.5.

13.8.5 control structures

Control structures have been described in Chapt. 13.6. Some simple examples will be given
below.

460 CHAPTER 13. INTERACTIVE INTERPRETER

Control structure examples:

Test sequences for ngspice control structures
xvectors are used (except foreach)
xstart in interactive mode

.control

* test sequence for while, dowhile
let loop =0
echo
echo enter loop with "$&Lloop"
dowhile loop < 3
echo within dowhile loop "$&loop"
let loop = loop + 1

end

echo after dowhile loop "$&loop"
echo

let loop =0

while loop < 3
